【自谐振空气线圈求解器】【无线电力传输系统】计算自谐振空气线圈的谐振频率和品质因数研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

SRACS是用于分析自共振空气线圈的功能集合。它是为无线电力传输系统的分析开发的,但也可能适用于由准周期谐振器结构制成的类似超材料的其他应用。
SRACS可以计算近似旋转对称的导线线圈,如螺旋线圈、螺纹线圈或更复杂的具有任意绕线函数的结构。
SRACS包括一个非常快速的特征频率求解器、一个用于计算品质因数的后处理例程,以及一个用于检查磁耦合谐振器系统的系统求解器。在损耗的计算中,考虑到了皮肤效应、邻近效应和辐射效应。

参考文献1:利用传输线方法计算用于无线功率传输系统的自谐螺旋线圈

摘要:
提出了一个数学模型,用于计算具有任意绕线函数的自谐振平面线圈。该模型由传输线模型组成,可实现快速计算。它用于确定给定几何形状的谐振频率和电流分布,并针对其品质因数进行优化。通过这种方式,可以找到用于谐振无线电能传输系统的紧凑高质量谐振器。
Calculation of Self-Resonant Spiral Coils for Wireless Power Transfer Systems With a Transmission Line Approach | IEEE Journals & Magazine | IEEE Xplore

参考文献2:

Simulation und Optimierung resonanter Übertragungsstrecken für drahtlose ... - Bernd Breitkreutz - Google 图书 对于电器设备的无线能量供应,在源和负载之间需要克服较大距离,而又不降低效率至不可接受水平,这对传输系统提出了特殊要求。一个可能的技术解决方案是近场耦合的电磁谐振器。通过谐振增强,只需发射器和接收器之间进行弱耦合即可实现高效能量交换。本书讨论了这类谐振器的计算和尺寸确定。介绍了自谐振空气线圈的物理模型,允许对其耦合、辐射和品质进行高效的数值模拟。利用这个模型,研究了通过优化谐振器几何形状可以实现的最大传输距离。

SRACS是用于分析自共振空气线圈的功能集合。它是为无线电力传输系统的分析开发的,但也可能适用于由准周期谐振器结构制成的类似超材料的其他应用。
SRACS可以计算近似旋转对称的导线线圈,如螺旋线圈、螺纹线圈或更复杂的具有任意绕线函数的结构。
SRACS包括一个非常快速的特征频率求解器、一个用于计算品质因数的后处理例程,以及一个用于检查磁耦合谐振器系统的系统求解器。在损耗的计算中,考虑到了皮肤效应、邻近效应和辐射效应。

📚2 运行结果

部分代码:

%%
% This function displays the current and voltage along phi. If you are
% interested in the distribution against the wire position, you have to plot it
% manually:
figure
plot(arch.geo.wire, arch.sol.I(:,2))
xlabel('position on wire in meters')
ylabel('current amplitude of second mode')

%%
% You may notice the sharp edge in the chart. This is because SRACS
% neglects stray capacitances at the ends of the wire. However, the effect
% on the frequencies and quality factors is rather small.

%% more complicated geometries
% A strength of SRACS is the flexibility of the winding function. You can
% define pretty complicated resonators, as long as they are 'spiralish'.
% Don't try to define a screw with only 3 windings and a diameter of 10cm, 
% that is a couple of meters long. This is a dipole antenna and not a coil!
%
% Lets have a look at a ballish resonator:
ball=struct;
ball.N=20; %slower, but smooth plots
ball.W=10;
ball.diameter=1e-3;
ball.ana.w_function=@w_christmasTreeBall;
ball.ana.w_params={1e-2};

ball=sracs_solver(ball);
sracs_plot_geo(ball,2);

%% 
% This is a 3D-geometry, but still pretty simple, because its windings are
% sorted (i.e. the second winding is between the first and the third one).
% Let's now put the windings of a spiral around the surface a torus, and
% let us surround it twice:
torus=struct;
torus.N=30;
torus.W=14.75;
torus.diameter=1e-3;
torus.ana.w_function=@w_torus;
torus.ana.w_params={10e-2, 2e-2, 2};
torus=sracs_solver(torus);
sracs_plot_geo(torus,2)

%%
% Now the windings are geometrically mixed, inner and outer ones close
% together.

%% Tuning
% Usually one is interested given resonant frequencies. SRACS comes with a
% function to tune a spiral via the number of windings. One should define
% the winding function in a way that tuning leads to the desired change. In
% this example, we tune to 50MHz and the outer radius of the spiral will
% become bigger.
archTuned=arch;
archTuned.set.solNumber=1;
archTuned.set.freqGoal=50e6;
archTuned.set.freqTol=0.01;
archTuned=sracs_tuner(archTuned,1);

display(sprintf('\nOriginal: N=%i, W=%2.2g, f=%2.3gMHz', arch.N, arch.W, arch.sol.f(1)/1e6))
display(sprintf('Tuned: N=%i, W=%2.2g, f=%2.3gMHz', archTuned.N, archTuned.W, archTuned.sol.f(1)/1e6))

%% Quality factor
% Now that we have the resonant frequencies and current distributions (and
% the electric properties in '.num') We can calculate the quality factor.
% Because it can be a little time consuming, it is only computed for one
% single mode. We will choose the first one:
arch.set.solNumber=1;

%%
% The qualitiy factor depends on the conductivity of the metal. We use
% copper:
arch.conductivity=58e6;

tic
arch=sracs_quality(arch)
toc

%%
% The struct was extended by a new sub-struct, which contains the
% postprocessing results for arch.set.solNumber, i.e. the stored energy,
% radiated and heat power and the quality factors with respect to ohmic
% losses, radiation losses and both of them.
arch.pp

%%
% The settings have been extended as well:
arch.set

%%
% To calculate the quality factor, the skin-effect is always considered.
% But if the single windings are close to each other, the proximity-effect
% is significant as well. The defaults consider the proximity-effect, that
% is why the computation of Q is a little slow. If the gap between your
% windings is sufficiently huge, you can change the options to 'noprox'
% and 4 to speed up the computation.


%% Coupled resonators
% SRACS is able to calculate systems of inductively(!) coupled resonators.
% Capacitive coupling is not implemented, because the fields are mostly
% concentrated between the windings.
%
% Be aware that the magnetic coupling is implemented with a simple
% Neumann-formula. Therefore, you will propably need bigger N than for the
% uncoupled frequencies. Please try some different values and have a look
% at the convergence.
%
% We define a new struct that defines a system of coupled coils. We want to
% know the coupling coefficient between two different Archimedean spirals,
% but with same resonant frequency.
arch.set.solNumber=1;
arch.set.freqGoal=50e6;
arch.set.freqTol=0.01;
arch=sracs_tuner(arch);

arch2=arch;
arch2.ana.w_params={1e-2, 0.3e-2, 8e-2};
arch2=sracs_tuner(arch2);

twoSpirals=struct;
twoSpirals.res=[arch arch2];

%%
% The first spiral stays at the origin of the coordinate system (x,y,z).
% The second one is shifted by 5cm, and tilted by 20 degrees.
twoSpirals.res(2).pos.z=10e-2;
twoSpirals.res(2).pos.beta=-20;

tic
twoSpirals=sracs_system_solver(twoSpirals)
toc

%%
% The results are similar to those of a single spiral, but contain the
% solutions for all resonators. Therefore, the first and last index of
% every spiral is given.
%
% A look at the results:
sracs_system_plot_geo(twoSpirals)
sracs_system_plot_geo(twoSpirals,2)

%%

sracs_system_plot_sol(twoSpirals, [1,2])

%%
% Now that we have a system of two resonators, the first two eigen
% solutions represent the odd and even mode of the first self resonant
% frequency. We can easily calculate the coupling coefficient from the
% frequency values:
f1=twoSpirals.sol.f(1);
f2=twoSpirals.sol.f(2);
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]Breitkreutz, B.; Henke, H., "Calculation of Self-Resonant Spiral Coils for Wireless Power Transfer Systems With a Transmission Line Approach," in Magnetics, IEEE Transactions on, vol.49, no.9, pp.5035-5042, Sept. 2013

[2]Breitkreutz, Bernd; "Simulation und Optimierung resonanter Übertragungsstrecken für drahtlose Energieübertragungssysteme," ISBN 978-3-8325-4117-0

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值