基于CNN-LSSVM的自行车租赁数量预测研究(Matlab代码实现)

           💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、模型构建

1. 数据收集与处理

2. CNN特征提取

3. LSSVM回归预测

三、实验结果与分析

四、结论与展望

五、注意事项

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CNN-LSSVM(卷积神经网络-最小二乘支持向量机)的自行车租赁数量预测研究是一个结合了深度学习与传统机器学习技术的预测模型。以下是对该研究的详细分析:

一、研究背景与意义

随着共享经济的兴起,自行车租赁系统作为一种环保、便捷的出行方式,在各大城市得到广泛应用。准确预测自行车租赁数量对于共享单车公司优化资源配置、提高运营效率具有重要意义。CNN-LSSVM模型利用CNN在特征提取方面的优势以及LSSVM在回归预测中的高效性,旨在提高预测的准确性和稳定性。

二、模型构建

1. 数据收集与处理
  • 数据来源:包括历史租赁数据、天气数据、节假日信息、地理位置数据等。这些数据对于预测自行车租赁数量至关重要。
  • 数据预处理:对数据进行清洗、去噪、归一化等处理,以确保数据的准确性和一致性。
2. CNN特征提取
  • 卷积层:通过多个卷积层提取数据中的空间特征,如时间趋势、地理位置分布等。
  • 池化层:减少数据的空间维度,降低计算复杂度,同时保留重要特征。
  • 全连接层:将卷积层和池化层提取的特征进行整合,形成更高层次的特征表示。
3. LSSVM回归预测
  • 最小二乘支持向量机:利用LSSVM进行回归预测,根据提取的特征预测未来的自行车租赁数量。
  • 参数优化:通过交叉验证等方法优化LSSVM的参数,以提高预测精度。

三、实验结果与分析

  • 评价指标:采用平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)等指标评估模型的预测性能。
  • 实验结果:相比于传统预测方法(如ARIMA、LSTM等),CNN-LSSVM模型在预测精度和稳定性方面表现出色。具体来说,该模型能够更准确地捕捉自行车租赁数量的变化趋势,特别是在高峰时段和节假日等特殊情况下。

四、结论与展望

  • 结论:基于CNN-LSSVM的自行车租赁数量预测模型具有较高的预测精度和稳定性,能够为共享单车公司提供有效的决策支持。
  • 展望:未来研究可以进一步探索其他影响自行车租赁数量的因素,如用户行为、政策变化等,并将这些因素纳入预测模型中。同时,可以尝试将更多先进的深度学习技术应用于自行车租赁数量预测领域,以进一步提高预测精度和实用性。

五、注意事项

  • 在实际应用中,需要根据具体情况对模型进行调整和优化,以确保预测结果的准确性和可靠性。
  • 数据的质量和数量对模型的预测性能具有重要影响,因此需要确保数据的完整性和准确性。
  • 模型的预测结果仅供参考,实际运营中还需要结合其他因素进行综合考虑。

📚2 运行结果

 

部分代码:

function [mae,rmse,mape,error]=calc_error(x1,x2)

error=x2-x1;  %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])

 mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])

 mape=mean(abs(error)/x1);
 disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]李婷婷.城市公共自行车租赁点选址规划研究[D].北京交通大学,2010.DOI:10.7666/d.y1961114.

[2]陆朕.公共自行车租赁点车辆数的预测方法研究[D].南京师范大学,2015.DOI:10.7666/d.Y2857359.

[3]韩军红,魏越,侯礼兴.公共自行车租赁点规模优化[J].山西建筑, 2023, 49(22):57-61.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值