【负荷预测】基于CNN-GRU的负荷预测研究(Python代码实现)

            💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、CNN-GRU混合模型原理

1. CNN(卷积神经网络)

2. GRU(门控循环单元)

三、基于CNN-GRU的负荷预测方法

四、实际应用案例

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CNN-GRU的负荷预测研究文档

一、引言

随着智能电网的发展,负荷预测在电力系统的运行和管理中扮演着越来越重要的角色。基于CNN(卷积神经网络)和GRU(门控循环单元)的混合模型,在负荷预测领域展现出了较高的准确性和稳定性。本文旨在探讨基于CNN-GRU的负荷预测方法,并分析其在实际应用中的效果。

二、CNN-GRU混合模型原理

1. CNN(卷积神经网络)

CNN是一种前馈神经网络,特别适用于处理具有网格结构的数据,如图像或时间序列。在负荷预测中,CNN通过卷积层提取输入数据的局部特征,如负荷数据的时间序列特性、气象数据的空间分布等。卷积层之后通常会跟随池化层,用于降低数据维度,减少计算量,并增强模型的鲁棒性。

2. GRU(门控循环单元)

GRU是循环神经网络(RNN)的一种变体,专门设计用于处理序列数据。与LSTM(长短期记忆网络)相似,GRU也通过门控机制控制信息的流动,但结构更为简单,参数更少,训练速度更快。在负荷预测中,GRU能够捕捉时间序列中的长期依赖关系,为预测未来时刻的负荷值提供重要依据。

三、基于CNN-GRU的负荷预测方法

基于CNN-GRU的负荷预测方法通常包括以下几个步骤:

  1. 数据预处理:对原始负荷数据和气象数据进行清洗、归一化等预处理操作,以消除噪声和量纲差异对模型训练的影响。

  2. 特征提取:使用CNN对预处理后的数据进行特征提取。通过卷积层和池化层的组合,提取出数据中的关键特征,为后续处理提供有力支持。

  3. 序列建模:将CNN提取的特征输入到GRU网络中,利用GRU的门控机制捕捉时间序列中的长期依赖关系。GRU通过更新门和重置门控制信息的流动,实现对时间序列数据的建模。

  4. 预测输出:经过GRU处理后,输出预测结果。通常可以使用全连接层将GRU的输出转换为最终的预测值。

  5. 模型评估:使用测试集数据对训练好的模型进行评估,计算预测值和真实值之间的误差(如RMSE、MAE等),评估模型的预测性能和稳定性。

四、实际应用案例

已有研究表明,基于CNN-GRU的负荷预测方法在实际应用中取得了良好的效果。例如,某研究团队使用某地区的负荷数据结合当地的气象数据,对CNN-GRU方法进行了测试。结果表明,与单独的CNN网络或GRU网络相比,CNN-GRU网络对电力系统短期负荷的预测误差更小,预测精度更高。

五、结论与展望

基于CNN-GRU的负荷预测方法充分利用了CNN和GRU的优势,在提取数据特征和捕捉时间序列依赖关系方面表现出色。未来,随着深度学习技术的不断发展,基于CNN-GRU的负荷预测方法有望在更多领域得到应用和推广。同时,研究者们也可以继续探索其他深度学习模型在负荷预测中的应用,以进一步提高预测精度和稳定性。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值