💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于4G/5G信号的OFDM系统峰均功率比(PAPR)研究
一、OFDM系统基本原理与4G/5G应用特点
-
OFDM技术核心原理
- 多载波调制:将高速数据流分割为多个低速子流,通过正交子载波并行传输,子载波间隔为符号周期的倒数(如LTE中15kHz)。
- 正交性优势:子载波频谱重叠但保持正交性,频谱利用率显著高于传统频分复用(FDM)。
- 抗多径干扰:通过循环前缀(CP)消除符号间干扰(ISI),CP长度需大于信道最大时延扩展。
-
4G/5G中的应用特性
- 4G特点:OFDM结合MIMO技术,支持20MHz带宽,上传速率达20Mbps,采用QPSK/16QAM调制。
- 5G增强:支持更灵活的子载波间隔(如30kHz、60kHz),引入滤波器组OFDM(F-OFDM)和新型波形以降低带外泄漏,但PAPR问题仍突出。
- 关键优势:高频谱效率(4G达5bps/Hz,5G进一步提升)、低延迟(1ms以下)、多用户接入能力。
二、PAPR的定义、成因及影响
-
PAPR数学定义
-
高PAPR成因
- 多载波叠加:大量独立调制的子载波在时域叠加时可能出现相位一致的高峰值。
- 调制方式影响:高阶调制(如64QAM)比BPSK/QPSK更易产生高PAPR。
-
对系统的影响
- 功率放大器非线性失真:高PAPR迫使功放(PA)工作在线性区外,导致带内失真(EVM恶化)和带外辐射(ACLR超标)。
- 能效下降:为满足峰值功率,PA需预留更大裕量(如12dB PAPR需PA饱和点达52dBm),导致效率仅10%-30%。
三、现有PAPR降低技术分类与比较
-
信号失真类技术
- 限幅滤波(Clipping & Filtering) :直接截断超过阈值的峰值,但引入带内失真和带外噪声。
- 压缩扩展变换(Companding) :动态压缩大信号、扩展小信号,保持平均功率恒定,但BER性能下降。
-
概率类技术
- 选择性映射(SLM) :生成多组相位旋转信号,选择PAPR最低的传输,复杂度随相位因子数指数增长。
- 部分传输序列(PTS) :将数据分块并优化相位加权系数,改进算法(如Gray-PF-PTS)可降低复杂度50%以上。
-
编码类技术
- 预留子载波(TR) :预留部分子载波生成补偿信号,需额外频谱资源,适用于低复杂度场景。
- Reed-Muller码:通过编码约束子载波组合,直接避免高峰值,但牺牲数据速率。
-
混合与新兴技术
- SLM+压扩联合优化:结合SLM的BER优势与压扩的PAPR抑制能力,实现PAPR降低8dB且复杂度可控。
- AI辅助优化:利用神经网络预测最佳相位因子或限幅阈值,减少传统算法的迭代次数。
四、4G/5G标准中的PAPR控制要求
-
4G/LTE标准
- PAPR典型值12dB,通过CFR(峰均比降低)技术降至7.5-10dB,允许使用低成本PA。
- 采用动态调制编码(AMC)自适应调整PAPR与频谱效率的平衡。
-
5G/NR标准
- 引入低PAPR波形(如DFT-s-OFDM),上行链路PAPR可低至3-5dB。
- 要求PA效率提升至40%以上,需结合数字预失真(DPD)与CFR联合优化。
五、学术界研究热点与未来方向
-
当前研究重点
- 新型波形设计:如FBMC、UFMC在5G中的应用,其PAPR特性与传统OFDM差异显著,需针对性优化。
- 跨层联合优化:结合物理层PAPR抑制与MAC层调度算法,提升系统整体能效。
-
未来挑战
- 毫米波与大规模MIMO:高频段和大规模天线阵列加剧PAPR问题,需开发低复杂度实时算法。
- 绿色通信需求:6G时代PA效率需突破50%,PAPR控制目标降至5dB以下。
六、结论
OFDM作为4G/5G的核心技术,其PAPR问题直接影响系统能效与成本。现有技术通过信号处理、编码优化和混合算法已实现显著改进,但5G/6G的高性能需求推动了对新型波形和AI辅助方法的探索。未来研究需在PAPR抑制、频谱效率及计算复杂度之间寻求更优平衡,以支撑超高速率与超低功耗的通信需求。
📚2 运行结果
部分代码:
% A: Setting Parameters
% ---------------
M = 4; % QPSK signal constellation
no_of_data_points = 128; % have 128 data points
block_size = 8; % size of each ofdm block
cp_len = ceil(0.1*block_size); % length of cyclic prefix
no_of_ifft_points = block_size; % 128 points for the FFT/IFFT
no_of_fft_points = block_size;
% ---------------------------------------------
% B: % +++++ TRANSMITTER +++++
% ---------------------------------------------
% Generate 1 x 128 vector of random data points
data_source = randsrc(1, no_of_data_points, 0:M-1);
figure(1)
stem(data_source); grid on; xlabel('Data Points'); ylabel('transmitted data phase representation')
title('Transmitted Data "O"')
% Perform QPSK modulation
qpsk_modulated_data = pskmod(data_source, M);
scatterplot(qpsk_modulated_data);title('MODULATED TRANSMITTED DATA');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]李勇志,肖江南,陈明,等.基于虚拟子载波降低光正交频分复用信号峰均功率比新方法的实验研究[J].光学学报, 2013(7):7.
[2]李巍,邓建国.正交频分复用码分多址信号峰均功率比特性的研究[J].西安交通大学学报, 2004, 38(10):5.
[3]贾艳杰.降低电力线正交频分复用系统的峰均比研究[D].燕山大学,2012.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取