【多智能体系统】在通信范围受限且存在障碍物的环境中,基于A*算法的紧密多机器人协调策略研究(Matlab代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

在通信范围受限且存在障碍物的环境中,基于A*算法的紧密多机器人协调策略

一、问题背景与核心挑战

二、多机器人协调机制与A*算法的结合

1. 协调架构选择

2. A*算法的改进策略

3. 通信受限环境下的协调优化

三、障碍物环境下的路径规划策略

1. 静态障碍物处理

2. 动态障碍物与多机器人避碰

3. 死锁解决机制

四、典型应用案例与算法验证

五、未来研究方向

总结

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

MATLAB【紧密多机器人协调】【用于紧密多机器人协调的A*算法】在通信范围受限且存在障碍物的环境中,多智能体系统需要紧密协调多机器人,以确保它们在不违反通信范围限制的情况下协调行动并达到目标目的地

在通信范围受限且存在障碍物的环境中,基于A*算法的紧密多机器人协调策略

一、问题背景与核心挑战

在复杂动态环境中,多机器人系统需在通信范围受限障碍物密集的条件下实现高效协调,这对路径规划与协调机制提出了双重挑战:

  1. 通信约束:机器人无法实时共享全局信息,需依赖局部通信或间歇性交互,可能导致信息孤岛与路径冲突。
  2. 障碍物环境:静态与动态障碍物增加了碰撞风险,需动态调整路径并协调多机器人行动。
  3. 协调效率:传统集中式规划(如全局A*)难以扩展,而完全分布式方法可能陷入局部最优或死锁。

二、多机器人协调机制与A*算法的结合
1. 协调架构选择
  • 混合式控制:结合集中式与分布式优势。例如,中央节点生成全局路径(使用改进A*),机器人本地执行动态避障(如动态窗口法DWA)。
  • 优先级调度:为机器人分配动态优先级,高优先级机器人优先规划路径,低优先级机器人将其路径视为动态障碍物。证据表明,动态调整优先级可减少死锁。
2. A*算法的改进策略
  • 双向搜索与启发式优化:采用双向A*减少搜索时间,并设计自适应启发式函数(如动态调整曼哈顿距离权重),以平衡路径长度与计算效率。
  • 路径平滑与避障增强:在A*生成的路径上叠加势场法或B样条曲线,避免直角转弯并动态避障。
  • 多目标优化:引入能耗、安全代价等权重因子,实现多目标权衡(如能耗最小化与通信保持)。
3. 通信受限环境下的协调优化
  • 预留表机制:通过集中式生成全局“路径时间-空间预留表”,机器人分布式规划时避开其他机器人的预定路径段。此方法在智能仓储中验证了有效性。
  • 局部通信与间歇性交互:机器人仅在通信范围内交换关键状态(如位置、路径片段),并采用“会面点”策略周期性同步信息。例如,无人机在预定地点交换地图数据。
  • 动态通信范围调整:基于分布式算法,机器人自主调整通信半径(ri),以最小化通信开销同时维持协调性。

三、障碍物环境下的路径规划策略
1. 静态障碍物处理
  • 障碍物感知与地图更新:使用SLAM技术构建局部地图,并通过间歇性通信融合全局地图。
  • 路径优化函数改进:在A*的代价函数中增加障碍物密度惩罚项,引导路径绕开高风险区域。
2. 动态障碍物与多机器人避碰
  • 协同避碰算法:结合ORCA(Optimal Reciprocal Collision Avoidance)与A*,机器人预测彼此轨迹并协商避让。
  • 时间窗口法:为机器人分配时间窗口进入冲突区域,避免同时占用同一空间。
3. 死锁解决机制
  • 虚拟目标点插入:当机器人陷入U型障碍物时,插入临时目标点引导其脱离局部极小值。
  • 弹性路径重规划:检测到死锁时,触发局部A*重规划,并通知邻近机器人调整路径。

四、典型应用案例与算法验证
  1. 智能仓储系统

    • 方法:改进A* + 预留表 + 分布式控制。
    • 效果:减少碰撞率30%,路径长度优化15%。
  2. 工业园物料运输

    • 方法:双向A* + 动态优先级调度。
    • 优势:适应动态障碍物(如矿车),计算效率提升40%。
  3. 无人机协同探索

    • 方法:间歇性通信 + 会面点同步。
    • 结果:在通信中断时仍能完成80%地图覆盖。

五、未来研究方向
  1. 强化学习与A*融合:通过Q-learning优化启发式函数权重,适应动态环境。
  2. 异构机器人协同:针对不同运动能力的机器人设计分层A*策略。
  3. 通信-计算联合优化:在5G边缘计算架构下,实现低延迟路径规划与实时避障。

总结

在通信受限与障碍物并存的环境中,紧密多机器人协调需综合改进A*算法、动态通信策略及协同避障机制。现有研究表明,混合式控制架构、预留表机制及自适应启发式函数能显著提升系统鲁棒性。未来结合AI与边缘计算技术,有望实现更高层次的自主协调能力。

📚2 运行结果

部分代码:

valid(valid_size,:)=new_row; % initializing path with start position
valid(valid_size,1)=0;

valid2(valid_size2,:)=new_row2; % initializing path with start position
valid2(valid_size2,1)=0;

in_valid_size=in_valid_size+1;
in_valid(in_valid_size,1)=cell_x; % make it invalid for further iterations
in_valid(in_valid_size,2)=cell_y;

in_valid_size2=in_valid_size2+1;
in_valid2(in_valid_size2,1)=cell_x2; % make it invalid for further iterations
in_valid2(in_valid_size2,2)=cell_y2;

path_not_found=1;
path_not_found2=1;

first_found = 0;
second_found = 0;
%&& (cell_x2 ~= x_target2 || cell_y2 ~= y_target2)
% && path_not_found2 == 1

while((cell_x ~= x_target || cell_y ~= y_target) && path_not_found == 1)
    % x | y | h | g | f
        successors=explore_successors(cell_x,cell_y,path_cost,x_target,y_target,in_valid,max_x,max_y);
        successors_size=size(successors,1);
        for i=1:successors_size
        flag=0;
        for j=1:valid_size
            if(successors(i,1) == valid(j,2) && successors(i,2) == valid(j,3) ) % if successor same as already existing cell inpath
    %             disp('valid')
    %             valid
    %             disp(' ');
                valid(j,8)=min(valid(j,8),successors(i,5)); % check for minimum f and then pick it 
                if valid(j,8) == successors(i,5)
                    valid(j,4)=cell_x;% parent x
                    valid(j,5)=cell_y;% parent y
                    valid(j,6)=successors(i,3); % h
                    valid(j,7)=successors(i,4); % g
                end;
                flag=1;
            end;
        end;
        if flag == 0 % if new cell with minimum f(n) then add to valid_path
            valid_size= valid_size+1;
            new_row=[1,8];
            new_row(1,1)=1;
            new_row(1,2)=successors(i,1);
            new_row(1,3)=successors(i,2);
            new_row(1,4)=cell_x; % parent x
            new_row(1,5)=cell_y; % parent y
            new_row(1,6)=successors(i,3); % h
            new_row(1,7)=successors(i,4); % g
            new_row(1,8)=successors(i,5); % f
            valid(valid_size,:)= new_row;
         end;
        end;

        index_min_cell = min_f(valid,valid_size,x_target,y_target);
        if (index_min_cell ~= -1) % if index with minimum fn is obstacle no path exists    
            cell_x=valid(index_min_cell,2);
            cell_y=valid(index_min_cell,3);
            
            fprintf('Cell for bot1 choosen x %d, y %d \n',cell_x,cell_y);    
            path_cost=valid(index_min_cell,6);
            
            in_valid_size=in_valid_size+1; % put the cell in_valid so we dont come back on it again

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]许源.结合粒子群算法和改进人工势场法的移动机器人混合路径规划[D].浙江大学[2025-02-26].

[2]姚芝凤,叶秀芬,戴学丰,等.一种基于效益的多机器人避碰协调策略[J].计算机工程与科学, 2014, 36(7):1324-1329.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值