💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要——智能配电网应高效整合随机可再生资源,同时实现电压调节。能量管理方案的设计具有挑战性,原因之一是能量管理是一个多阶段问题,其中的决策并非都在同一时间尺度上做出,并且必须考虑实时运行中的变化性。本文考虑了智能配电网中慢速和快速时间尺度控制的联合调度。变电站电压、与主电网交换的能量以及小型柴油发电机的发电计划需要在慢速时间尺度上做出决策;而光伏逆变器的最佳设定点则需要更频繁地确定。虽然逆变器和较宽松的电压调节限制始终被施加,但更严格的母线电压约束则以平均值或概率的方式强制执行,从而实现更高效的可再生能源整合。通过将两阶段电网调度重新表述为随机凸凹问题,提出了两种无分布假设的方案。一种平均调度算法通过一系列凸二次规划序列被证明能够收敛到最优的两阶段决策。其非凸概率替代方案涉及求解两个略有不同的凸问题,并在数值上被证明能够收敛。在真实配电网馈线上的数值测试验证了这两种新颖的数据驱动方案相比其他竞争方案能够实现更低的成本。
关键词——多阶段经济调度、电压调节、随机逼近、凸凹问题。
**随着可再生发电的增加,配电网的能量管理正成为一个计算上具有挑战性的任务。**光伏(PV)单元的太阳能在一分钟间隔内可能会发生显著变化。PV单元中的电力逆变器可以在几秒内被命令削减有功功率发电或调整其功率因数[1],[2]。在一个更慢的时间尺度上,配电网运营商每小时或每10分钟与主电网交换能量,并且如果偏离能源市场调度计划,可能会面临成本惩罚[3]。此外,微电网中可能安装的电压调节设备和小型柴油发电机也以相同较慢的时间尺度响应。因此,优化这些多样化任务的全面设计需要多阶段智能电网调度解决方案。
**受需求响应计划和使用PV逆变器完成各种电网任务的推动[4],配电网的单阶段调度方案一直是研究热点。**电力逆变器可以使用局部规则进行电压调节,例如见[5],[6],[7],[8]。假设节点与公用事业运营商之间存在双向通信,调度配电网可以被表述为最优潮流(OPF)问题。集中式方案使用非线性规划求解器[9],或者依赖于平衡[10],[11]或不平衡电网[12]的完整交流模型的凸松弛。分布式求解器在[13],[14],[15]中被设计,以降低计算复杂性。然而,配电网的高效和安全运行涉及不同时间尺度上的决策。文献[16]建议采用动态规划方法进行两阶段调度:电压调节器的抽头在慢速时间尺度上设置,并在连续的较短时间间隔内保持固定,而弹性负载在这些间隔内被调度;然而,假设负载的灵活性是事先已知的。或者,可以将集中计算的OPF决策以慢速时间尺度通信到节点,而在更快的时间尺度上,PV电力电子设备被调整以最优地跟踪可再生发电和需求的变化[17],[18]。后者的方案依赖于近似的电网模型,从而实现完全本地化的实时实施。然而,它们假设系统过渡是平滑的,并且为单个确定性的快速时间尺度场景调度慢速响应单元。
**在不确定性下,多阶段调度在输电系统和微电网中被广泛使用[19]。**鲁棒方法为最坏情况的快速时间尺度结果寻找最优的慢速时间尺度决策;见[20]及其参考文献。为了避免鲁棒方案的保守性,概率方法假设需求、风力发电和系统紧急情况的概率密度函数(pdf),以找到日前电网调度计划[21],[22]。风险限制调度框架随着接近实际时间,调整多阶段决策,同时减少涉及的随机变量的方差[3]。在额外的输电拥堵假设下,只有对于方便的pdf,才能高效计算网络约束的风险限制调度的决策[23]。作为第三种选择,随机抽样近似方法使用从假设的pdf中抽取的样本,为慢速时间尺度找到最优决策;例如见[24],[25]。
**回到配电网,PV逆变器可能会在时间和节点上偶尔过载,以适应太阳能波动并防止过电压[26]。**电力系统组件(如逆变器、节点电压、线路潮流)的时空过载因此可以成为智能电网中整合可再生能源的另一种手段。然而,确保过载偶尔发生会将决策在时间上耦合在一起。文献[27]的单阶段方案在限制过载量的时间平均值的同时找到最优的PV设定点。后一种方法也被采用在[28]中,用于在日前/实时市场设置下调度输电系统,同时进行负荷削减。
**本文考虑了在快速时间尺度决策的平均或概率约束下,联合调度慢速和快速时间尺度配电网资源。**我们的贡献有三个方面。首先,使用近似的电网模型,在满足逆变器和较宽松的节点电压约束的所有快速时间尺度槽的同时,最小化慢速控制周期内的预期成本。此外,在连续的快速时间尺度槽上,要么在平均值上,要么在概率上强制执行更严格的电压限制(见第II节)。第III节将两阶段电网调度表述为凸凹优化问题。其次,采用[29]中的随机鞍点近似方案,第IV节中的可证明收敛算法在平均约束的情况下找到最优的慢速时间尺度决策。第三,对于非凸概率约束的情况,第V节提出了一种算法,为每个快速时间尺度周期解决两个类似的凸问题。尽管相关的预期补偿函数具有零对偶间隙[30],但整体两阶段调度并非凸凹的;算法的性能仅通过数值验证。两种算法只需要负载和太阳能发电的样本,而不是概率密度函数,并且涉及求解简单的凸二次规划。第VI节在56节点馈线上的数值测试证实了我们发现的有效性。
首先,第 III 节将两阶段电网调度表述为凸凹问题:在缓慢控制周期内的预期成本最小化,同时始终满足较宽松的电压限制,并在平均或在概率上。其次,根据[30]中的随机鞍点近似方案,第四节中的可证明收敛算法为平均约束公式提供了最佳的慢时间尺度决策。与 SAA 方法不同,这种随机近似 (SA) 方案一次处理一个随机样本以提高计算效率。第三,在非凸概率约束的情况下,在第五节中提出了一种解决每个第二阶段的两个相似凸问题的算法。虽然预期成本享有零对偶差距[31],但总体两阶段调度是不是凸凹的,这就解释了为什么算法的性能是通过数值验证的。两种方案都只需要负载和太阳能发电的样本,并且可以依赖于近似或凸网格模型。在 56 和 123 节点上使用线性化分布流模型的数值测试证实了我们在第 1 节中发现的有效性。
结论:由于可再生能源发电的特性、机电组件的限制以及市场的运作方式,智能配电网的能量管理涉及慢速和快速时间尺度上的决策。由于慢速时间尺度的控制在多个光伏运行时段内保持固定,因此决策以随机方式在时间上相互耦合。为了适应太阳能的波动,允许电压偶尔过载,从而引入了快速时间尺度变量在平均值或概率上的耦合。平均电压约束导致了一个随机凸凹问题,而非凸概率约束则通过对偶分解和凸优化来处理。提出了仅使用随机样本寻找慢速和快速控制的高效算法。我们提出的两种新求解器在原始变量和对偶变量上均能收敛,并且相比确定性方案实现了更低的运行成本。尽管概率约束是针对整个电网应用的,但各个节点的电压仍保持在限制范围内。在每个节点上强制执行概率约束、开发分布式实现以及引入电压调节器是未来值得研究的方向。
详细数学模型及文章见第4部分。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、数据、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取