【故障诊断】格拉姆变换与并行网络1D-2D-CNN-BiLSTM故障诊断研究(Matlab代码实现)

       💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

格拉姆变换与并行网络1D-2D-CNN-BiLSTM的故障诊断研究

1. 格拉姆变换的核心作用

2. 并行网络架构设计

3. 技术优势与实验验证

4. 关键技术创新

5. 应用场景与局限性

6. 未来研究方向

总结

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

格拉姆变换与并行网络1D-2D-CNN-BiLSTM的故障诊断研究

1. 格拉姆变换的核心作用

格拉姆角场(Gramian Angular Field, GAF)及其变体(如GADF、GASF)是一种将一维时序信号转换为二维图像的技术,通过保留信号的时间相关性,将振动、电流等原始数据映射为具有空间特征的图像。这种转换的优势在于:

  • 信息保留:通过极坐标编码,将时序信号的相位和幅值信息转化为图像像素,保留了信号的时间序列特性。
  • 计算效率:相较于连续小波变换(CWT)等传统方法,GAF转换速度更快,适合实时处理。
  • 多模态输入:生成的二维图像可作为2D-CNN的输入,而原始一维信号可同时输入1D-CNN,实现并行特征提取。
2. 并行网络架构设计

1D-2D-CNN-BiLSTM模型通过多路径并行处理融合时空特征,具体结构如下:

  1. 输入层分路
    • 1D信号分支:原始振动信号直接输入1D-CNN,提取局部时序特征(如短期波动、频域特性)。
    • 2D图像分支:通过GAF转换的二维图像输入2D-CNN,捕捉空间纹理特征(如故障模式的空间分布)。
  2. 特征提取层
    • 1D-CNN结构:包含卷积层、池化层,参数少、计算复杂度低,适合实时处理。例如,通过多尺度并行卷积核(如3×1、5×1)提取不同时间窗口的特征。

    • 2D-CNN结构:利用经典网络(如VGG、ResNet)或轻量化设计(如组归一化卷积)提取图像深层特征,增强对故障模式的空间敏感性。
  3. 特征融合与BiLSTM建模
    • 特征拼接:1D和2D分支的输出通过全连接层或拼接层(Concatenation)融合,结合时序与空间信息。
    • BiLSTM层:双向长短期记忆网络处理融合后的特征,捕捉长期依赖关系。前向LSTM捕捉历史信息,后向LSTM捕捉未来上下文,增强对复杂故障动态的建模能力。
  4. 分类与优化
    • 最终输出通过Softmax或极限学习机(ELM)分类,结合交叉熵损失函数优化。
3. 技术优势与实验验证
  1. 并行结构的优势
    • 计算效率:1D-CNN的并行化处理能力(如多核卷积)可加速特征提取,而2D-CNN通过图像输入减少信号长度对模型深度的影响。

    • 特征互补性:1D分支擅长捕捉高频瞬态特征(如轴承早期损伤的脉冲信号),2D分支识别低频宏观模式(如齿轮磨损的周期性纹理),两者结合提升诊断鲁棒性。

  2. 实验性能
    • 小样本适应性:在仅20%训练数据下,模型测试准确率仍达97%以上,优于SVM(约85%)和单分支CNN(约93%)。
    • 跨负载泛化:在6种不同负载条件下,平均诊断准确率超过99%,表明模型对工况变化的强适应性。
    • 对比实验:与单一BiLSTM或CNN模型相比,并行结构的准确率提升约5-8%,且收敛速度更快。

4. 关键技术创新
  1. 动态数据增强
    • 结合GAF与生成对抗网络(GAN),通过生成故障样本解决数据不均衡问题。例如,裁剪GAF子图并结合WGAN-GP生成高质量图像,扩充小样本数据集。
  2. 注意力机制优化
    • 在BiLSTM层后引入注意力机制(Attention),加权聚焦关键时间步的特征,减少噪声干扰。
  3. 模型轻量化
    • 采用深度压缩技术(如剪枝、量化),在剪枝率≤0.85时,模型大小减少70%而精度保持99%以上,适合边缘设备部署。
5. 应用场景与局限性
  1. 适用场景
    • 旋转机械故障诊断(如轴承、齿轮箱)、电力设备监测(如变压器、电机)、结构健康评估(如桥梁损伤识别)。
  2. 局限性
    • 计算资源需求:并行结构需较高GPU内存,尤其在处理长序列信号时(如风电齿轮箱的分钟级振动数据)。
    • 信号转换失真:GAF对非平稳信号(如冲击性故障)的转换可能丢失高频细节,需结合时频分析(如CWT)弥补。
6. 未来研究方向
  1. 多模态融合扩展:引入声学信号、红外图像等多源数据,扩展并行网络输入维度。
  2. 自监督学习:利用对比学习(Contrastive Learning)从无标签数据中预训练特征提取器,提升小样本性能。
  3. 实时性优化:探索模型蒸馏(Knowledge Distillation)将并行网络压缩为轻量级单分支模型,适应工业实时诊断需求。

总结

格拉姆变换与并行网络1D-2D-CNN-BiLSTM的结合,通过时空特征融合与双向时序建模,显著提升了故障诊断的精度与泛化能力。其在复杂工况、小样本场景下的优异表现,为工业智能诊断提供了新的技术路径。未来研究需进一步平衡模型复杂度与实时性,并探索跨领域迁移学习的可能性。

📚2 运行结果

这里将采用格拉姆矩阵法生成的二维矩阵送入input1中,采用CNN进行空间特征提取,然后再将原始的一维数据送入vinput中,采用Bilstm进行时间特征的学习,最后再将生成的向量进行拼接,最后一起送到分类器或预测器中。

格拉姆矩阵图像:

部分代码:

%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 150, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.001, ...         % 初始学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
    'L2Regularization', 0.001, ...         % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 1, ...                                 % 关闭优化过程
    'Plots', 'none');                    % 画出曲线
% % start training
t0 = tic;  %开始计时
net = trainNetwork(trainD,train_Y, layers0,options0 );
toc(t0); % 从t0开始到此处的执行时间
%% Accuracy assessment
pred = classify(net, testD);
pred = pred';
accuracy=sum(test_Y==pred)/length(pred);   %计算预测的确率

% 标准bilstm作图
% 画方框图
figure
confMat = confusionmat(test_Y,pred);  %test_Y是真实值标签
zjyanseplotConfMat(confMat.');
xlabel('Predicted label')
ylabel('Real label')
title(['测试集正确率 = ',num2str(accuracy*100),' %'])
% 作图
figure
scatter(1:length(pred),pred,'r^')
hold on
scatter(1:length(pred),test_Y,'b*')
legend('预测类别','真实类别','NorthWest')
title(['测试集正确率 = ',num2str(accuracy*100),' %'])
xlabel('预测样本编号')
ylabel('分类结果')
box on
set(gca,'fontsize',12)

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]李宗源,陈谦,钱倍奇,等.基于格拉姆角场与并行CNN的并网逆变器开关管健康诊断[J].电力自动化设备, 2024, 44(8):153-159.

[2]张国栋,尹 强,羊 柳.基于格拉姆角场和 PSO-CNN 的滚动轴承 故障诊断方法[J].Journal of Ordnance Equipment Engineering, 2024, 45(4).

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值