【最优潮流】基于人工鱼群算法的最优潮流计算(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于人工鱼群算法的最优潮流计算研究

最优潮流问题

人工鱼群算法

计算步骤

一、人工鱼群算法(AFSA)的基本原理与特点

二、最优潮流(OPF)问题的定义与挑战

三、AFSA在电力系统优化中的应用现状

四、AFSA在OPF求解中的典型研究与改进措施

五、AFSA的优缺点及与其他算法的对比分析

六、总结与展望

📚2 运行结果

🎉3 参考文献

 🌈4 Matlab代码+数据+文献下载


💥1 概述

参考文献:

基于人工鱼群算法的最优潮流计算研究

  最优潮流(OPF)是当系统的结构参数及负荷给定时,通过控制变量的优选,找到能满足所有
指定的约束条件,并使系统的一个或多个性能指标达到最优时的潮流分布。最优潮流算法按照所采用的优化方法不同大致分为经典解算法和现代优化注法。
经典解算法主要是指以简化梯度法!、牛顿法3、内点法和解耦法为代表的基于线性规划和非线性规划以及解耦原则的解算方法。其特点是利用目标函数对控制变量一阶或二阶梯度求解,当搜索起始点在局部最优点的收敛域以内时,常常会陷入局部最优点。

现代优化算法是以一定的直观基础而构造的算法,也称为启发式算法,包括遗传算法GA 、模拟退
火算法SA 、粒子群优化算法SO 等。这类算法以独特的优点和机制为解决复杂问题提供了新的思路和手段,当前主要应用于传统的数学优化方法难以解决的大规模非线性优化问题。启发式算法与导数无关,无需进行假设和近似,具有随机性,容易跳出局部极值点﹐且具有内在并行性,大大提高了处理复杂优化问题的速度。
  依据人工鱼群优化算法( Artificial Fish Swar mA gorithm AFSA)﹐本文提出了求解最优潮流计算的
一种新方法。
人工鱼群算法是一种基于模拟鱼群行为的随机搜索优化算法,主要利用了鱼的觅食、聚群和追尾行
为,从构造单条鱼的底层行为做起,通过鱼群中各个体的局部寻优达到全局最优值在群体中突现出来的目的。计算实例表明该算法具有良好的克服局部极值、取得全局极值的能力。

最优潮流问题

 

人工鱼群算法

在水域中,鱼通过自行或尾随其它鱼找到营养物质多的地方,因而鱼生存数目最多的地方一般就是本水域中营养物质最多的地方。人工鱼群算法就是根据这一特点,通过构造人工鱼来模仿鱼群的觅食、聚群及追尾行为,从而实现寻优。以下是鱼类的几种典型行为:
l)觅食行为一般情况下鱼在水中随机、自由地游动,当发现食物时,则会向着食物逐渐增多的方向快速游去。
2聚群行为鱼在游动过程中为了保证自身的生存和躲避危害会自然地聚集成群。鱼聚群时所遵守的规则有:分隔规则,尽量避免与邻近伙伴过于拥挤;对准规则,尽量与邻近伙伴的平均方向一致;内聚规则,尽量朝邻近伙伴的中心移动。
3追尾行为当鱼群中的一条或几条鱼发现食物时,其邻近的伙伴会尾随其快速到达食物点。

 

 人工鱼群算法在聚群、内聚、拥挤度上寻求极小,而在食物浓度上寻求极大的基础上逐步向前寻优的,也就是每次迭代中人工鱼向极小方向寻优N步,N越小,寻优的精度会越高,但寻优速度会很慢;N越大,寻优的速度越快,但寻优到一定程度时出现振荡现象,影响寻优的精度。
优化的目标函数是个很复杂的非线性函数﹐应用常规的优化算法很容易陷入局部极值,或在极小和极大之间出现振荡无法收敛﹐而导致寻优效果较差。而遗传算法等算法则带来了更长的计算时间,应用人工鱼群算法则能很好地克服以上缺点.

计算步骤

一、人工鱼群算法(AFSA)的基本原理与特点

人工鱼群算法(AFSA)是一种模拟鱼群觅食、聚群、追尾等行为的群体智能优化算法。其核心原理在于通过个体间的协作与竞争实现全局最优解的搜索。

  1. 行为机制

    • 觅食行为:人工鱼感知视野范围内的高适应度区域(对应目标函数更优解),并向其移动。
    • 聚群行为:鱼群向邻近伙伴的中心移动,同时避免过度拥挤,以此增强全局搜索能力。
    • 追尾行为:个体追随当前最优解方向移动,加速收敛。
    • 随机行为:在未发现更优区域时随机游动,防止陷入局部最优。
  2. 关键参数与影响

    • 视野范围(Visual) :影响全局探测能力,范围越大越易发现全局最优,但计算成本增加。
    • 步长(Step) :步长较大可加速收敛,但可能导致震荡;较小步长提高精度但收敛慢。
    • 拥挤度因子(λ) :控制聚群密度,避免局部聚集。
  3. 算法特点

    • 鲁棒性强:对目标函数性质要求低,无需精确数学模型。
    • 并行性:适合分布式计算,处理大规模问题。
    • 全局寻优能力:通过随机行为和聚群机制跳出局部最优。

二、最优潮流(OPF)问题的定义与挑战

最优潮流是电力系统中通过优化控制变量(如发电机出力、电压幅值)使目标函数(如燃料成本、网损)最小化的复杂非线性问题,需满足等式与不等式约束。

  1. 数学模型
    • 目标函数:常见形式包括燃料成本最小化(二次函数)、网损最小化等,例如:

其中 ai,bi,ci 为发电机成本系数,PGi为出力。

  • 约束条件
  • 等式约束:节点功率平衡方程(如式 
  • 不等式约束:发电机出力范围、电压幅值限制、线路传输容量等。
  1. 传统求解方法的局限性
    • 经典算法(如牛顿法、内点法):收敛速度快,但对初值敏感且易陷入局部最优。
    • 现代智能算法(如遗传算法、粒子群算法):全局搜索能力强,但存在计算量大、参数调整复杂等问题。

三、AFSA在电力系统优化中的应用现状

AFSA因其鲁棒性和全局寻优能力,已在电力系统多个领域得到应用:

  1. 无功优化:通过调整电容器组和变压器分接头降低网损,实验证明AFSA在IEEE6和实际电网中优于遗传算法。
  2. 机组组合优化:处理大规模机组启停与出力分配问题,改进AFSA结合可变视野和遗传变异策略,显著缩短计算时间。
  3. 配电网重构:引入差分进化策略和全局极值公告板,提升收敛精度和效率。

四、AFSA在OPF求解中的典型研究与改进措施
  1. 典型研究案例

    • 动态罚函数法:将约束问题转化为无约束优化,应用于IEEE30节点系统,结果显示AFSA全局收敛能力优于PSO和GA。
    • 多目标优化:结合非劣保留机制处理燃料成本、排放和网损的多目标优化,生成分布良好的Pareto前沿。
    • 双鱼群算法:将鱼群分为基础群和单纯形群,前者负责广域搜索,后者进行局部精细优化,解决收敛慢问题。
  2. 算法改进方向

    • 参数自适应:动态调整视野和步长(如基于对数函数或混沌映射),平衡探索与开发。
    • 混合策略:与遗传算法变异操作、单纯形法结合,提升局部搜索精度。
    • 混沌初始化:利用混沌序列生成初始种群,增强多样性。

五、AFSA的优缺点及与其他算法的对比分析
  1. 优势

    • 全局搜索能力:通过聚群和随机行为有效避免局部最优,优于PSO和GA。
    • 鲁棒性:对初值和参数设置不敏感,适应复杂约束。
  2. 局限性

    • 收敛速度:后期收敛慢,需改进策略(如自适应步长)。
    • 精度不足:高维问题中易出现震荡,需结合局部搜索方法。
  3. 对比分析

    • 与PSO对比:PSO收敛更快,但易陷入局部最优;AFSA全局寻优更稳定。
    • 与GA对比:GA需更多计算资源,AFSA参数调整更灵活。

六、总结与展望

AFSA在OPF求解中展现出潜力,尤其在处理多目标、高维度问题方面。未来研究可聚焦以下方向:

  1. 混合算法开发:结合深度强化学习等新技术提升自适应能力。
  2. 并行计算优化:利用分布式计算框架(如Spark)加速大规模电网求解。
  3. 实际应用验证:在含可再生能源的主动配电网中测试算法的鲁棒性。

通过持续改进,AFSA有望成为电力系统优化领域的高效工具,为智能电网的经济与安全运行提供支持。

📚2 运行结果

部分代码:

load data1.txt;      %已建支路数据
load data2.txt;      %待选支路数据
load data3.txt;        %节点功率
tic,
data1=data1;
data2=data2;
data3=data3;
[N,row]=size(data3);  %N为节点数
fish=40;    %控制参数:人工鱼的条数
visual=7;   %控制参数:视野
delta=0.35;  %控制参数:拥挤度
step=5;     %控制参数:人工鱼移动的步长
maxcalculation=100;    %收敛条件:最大迭代次数
objectvalue=zeros(1,fish);  %食物浓度矩阵(1×fish)
[NN,row]=size(data2);   %NN为待选线路的维数
status=rand(fish,NN);  %人工鱼位置状态矩阵status
for i=1:fish
    for j=1:NN
        if status(i,j)<=0.5
            status(i,j)=0;
        else
            status(i,j)=1;
        end
    end
end
minvalue=inf;
for fishnumber=1:fish
    x=status(fishnumber,:);
    [B1,B,BL,NEW,NL,L,nbl]=builtnet(x,data2,data1);
    [tong]=liantong(N,L,BL);
    if tong>1
        objectvalue(fishnumber)=inf;
    else
       [operate,overflowvalue]=dcflow(N,L,BL,data3,nbl);
       construction=0;
       for i=1:NEW
           construction=construction+25*B1(i,6);    %计算建设费用每公里线路建设费用取25万元
       end
       objectvalue(fishnumber)=construction+operate+overflowvalue;
    end
   if objectvalue(fishnumber)<minvalue
      minvalue=objectvalue(fishnumber);     %minvalue记录最小的目标函数值
      minfish=status(fishnumber,:);         %minfish记录最小目标函数值所对应的人工鱼的位置
   end
end
%进行行为策略
calculation=1;
while calculation<maxcalculation
for fishnumber=1:fish
    [status,objectvalue,swarmflag]=swarm(status,fishnumber,objectvalue,visual,fish,NN,N,delta,step,data2,data1,data3);
    if swarmflag==0
        [status,objectvalue,followflag]=follow(status,fishnumber,objectvalue,visual,fish,NN,N,delta,step,data2,data1,data3);
        if followflag==0
             [status,objectvalue]=prey(status,fishnumber,objectvalue,visual,fish,NN,N,delta,step,data2,data1,data3);
        end
    end
end 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]刘耀年,李迎红,张冰冰,李春亮.基于人工鱼群算法的最优潮流计算[J].电工电能新技术,2006(04):30-33+66. 

 🌈4 Matlab代码+数据+文献下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值