💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于NSGA-II的综合能源优化调度研究
一、NSGA-II的基本原理与核心特点
NSGA-II(Non-dominated Sorting Genetic Algorithm II)是Deb等人在2002年提出的多目标优化算法,通过非支配排序和拥挤度距离计算实现高效搜索,具有以下核心特点:
- 快速非支配排序:将种群个体按支配关系分层,计算复杂度从O(MN³)降低至O(MN²),显著提升效率。例如,对于每个个体i,计算其被支配数n(i)和支配集S(i),逐层筛选出帕累托前沿。
- 精英保留策略:通过合并父代与子代种群,优先保留更优解,避免优秀个体丢失。
- 拥挤度比较算子:衡量解在目标空间的分布密度,优先选择稀疏区域个体以维持多样性。
- 无需共享参数:通过自适应机制替代传统遗传算法中的共享半径参数,简化调参过程。
二、综合能源系统优化调度的核心问题
综合能源系统(IES)需协调电、热、气等多能源形式,其优化目标与约束条件如下:
- 优化目标:
- 经济性:最小化运行成本(燃料费、购能成本、设备维护成本等)。
- 环保性:最小化碳排放(CO₂、SO₂等)及污染物排放。
- 效率与可靠性:最大化能源利用率、供需平衡与供应可靠性。
- 约束条件:
- 能量平衡约束:电、热、冷负荷的实时供需匹配。
- 设备运行限制:燃气轮机、储能装置等设备的出力上下限及爬坡率。
- 网络传输约束:气网压力、热网温度等动态特性。
- 储能状态约束:蓄电池荷电状态(SOC)限制。
三、NSGA-II在综合能源优化中的典型应用案例
- 多能互补系统优化:在包含光伏、风电、储能的IES中,以成本与碳排放为双目标,生成帕累托解集供决策权衡。
- 柔性配电网络调度:结合分布式光伏与氢储能,优化配电网络损耗、运行成本和碳排放,通过NSGA-II生成多目标最优解。
- 区域能源规划:用于分布式能源的选址与定容,优化经济性、可靠性与环境指标。
- 动态特性优化:考虑气-热网络次小时尺度的动态特性,提升可再生能源消纳能力。
四、关键变量与数学建模方法
- 决策变量:
- 设备出力:燃气轮机功率、储能充放电量、电转气设备效率等。
- 能源交易量:与主电网的交互功率、天然气采购量。
- 需求响应:负荷调整量、分时电价策略。
- 目标函数:
- 经济目标:F1=∑(Cfuel+Cgrid+Cmaintenance)
- 环境目标:
,其中ww为污染物权重。
- 模型线性化:将非线性约束(如热网传输方程)转化为混合整数线性规划(MILP),提升求解效率。
五、NSGA-II参数设置与收敛性分析
- 参数设置原则:
- 种群规模:通常为100~2000,规模越大解集越全面,但计算成本增加(例如文献中设置2000以覆盖复杂解空间)。
- 交叉与变异概率:交叉率0.8~0.9,变异率0.01~0.1,高交叉率促进全局搜索,低变异率避免破坏优秀基因。
- 迭代次数:300~500代,结合收敛标准(如两代间目标函数变化率<1%)动态终止。
- 收敛性验证方法:
- 指标对比:计算超体积(Hypervolume)、间距(Spacing)等指标,评估解集的收敛性与分布均匀性。
- 对比实验:与MOPSO、PAES等算法对比,验证NSGA-II在收敛速度与解集质量上的优势。
- 实际调参案例:
- 在蒙西地区储能优化中,设置种群300、交叉率0.9、变异率1/n,通过100代迭代实现快速收敛。
- 在柔性配电网络优化中,采用交替迭代法结合NSGA-II,300次迭代后目标函数趋于稳定。
六、挑战与未来方向
- 高维不确定性处理:风光出力、负荷波动等随机变量需与鲁棒优化或随机规划结合。
- 多时间尺度耦合:需协调电力的秒级响应与热/气网络的分钟级动态。
- 算法改进方向:
- 混合算法:引入正交设计或强化学习,提升高维目标(如3目标以上)优化性能。
- 并行计算:利用GPU加速非支配排序过程,应对大规模IES优化问题。
七、结论
NSGA-II通过非支配排序与拥挤度距离机制,为综合能源系统提供了高效的多目标优化工具。其在经济-环境权衡、动态特性优化等场景中表现突出,未来需进一步结合不确定性建模与算法混合策略,以应对更高复杂度的能源系统调度需求。
📚2 运行结果
部分代码:
for t=1:24 % (2) 冷能平衡约束
Pec(:,t)=-(Pmt(:,t)*0.8*1.2-Pc(:,t)); %电制冷机功率利用平衡求解
end
for t=1:24 % (1) 电能平衡约束
Pg(:,t)=-(Pmt(:,t)+Ppv(:,t)-Pec(:,t)/4-Pgs(:,t)-Pel(:,t)) ; %=0%电制冷机功率利用平衡求解
end
%tosis取点后各个设备出力
Pmt1 = mm(aa,1:24); % 燃气轮机出力
Phrb1= 0.8*mm(aa,1:24); %余热锅炉
Pac1=0.8*1.2*mm(aa,1:24);%吸收式制冷机
Pgs1=mm(aa,25:48); %地源热泵电功率
Pgs_hot1=4.4*mm(aa,25:48); %地源热泵热功率
Phs1=mm(aa,49:72); %储热热备
Pgb1=Pgb(aa,1:24); %燃气锅炉
Pec1=Pec(aa,1:24); %电制冷机
Pg1=Pg(aa,1:24); %电网交互
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]王安阳,单菲菲,钟崴等.基于非支配排序遗传算法-Ⅲ的工业园区综合能源系统多目标优化调度[J].热力发电,2021,50(06):46-53.DOI:10.19666/j.rlfd.202009257.
[2]李振,赵鹏翔,王楠等.基于储能灵活性的综合能源系统优化调度方法[J].电气传动,2023,53(05):33-40.DOI:10.19457/j.1001-2095.dqcd24103.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取