💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
高效、清洁、低碳是当今世界能源发展的主流 方向。发展实现能源与信息等领域新技术深度融
合,适应分布式能源发展、多元化(冷、热、电、气 等)用能需求等新业态的综合能源系统已成为能源 革命的客观要求与必然选择[1]。其中,以冷热电联 供(combined cooling heating and power,CCHP)系统 为核心,以“源–网–荷”各环节协同为主要特征的社区综合能源系统(community integrated energy system,CIES),有助于促进新能源规模化开发,实现不同能源的优势互补,保障社区内部经济高效用能[2-3],日益成为研究热点。
随着 CIES 的发展和电力市场的改革,源荷之间的耦合交互愈加明显,正由传统的垂直一体式结构
(自上而下)向交互竞争型结构(互相作用)转变[12]。电价不仅会影响负荷需求,负荷也会反作用于电价,传统集中优化方法难以描述两者之间的交互行为。此外,CIES 优化属于一类大规模复杂系统的优化问题,参数、变量繁多,集中优化对数据的传输、通信和处理能力要求较高,且不能保护各主体的信息隐私安全。因此,研究 CIES 分布式优化是更合适的选择,例如博弈论[13]、一致性理论[14-15]、交替方向乘子法[16]、分布式凸交计算[17]等。其中,博弈论是研究当多个决策主体之间存在利益关联或冲突时,各主体如何根据自身能力及所掌握信息,做出合理决策的理论[13]。非合作博弈[18]、讨价还价博弈[19]、演化博弈[20]、主从博弈[21]等博弈模型,逐渐应用于能源系统的优化运行和能量管理等领域。
本文中IER是基于电力市场中售电公司的概念提出的,在电能交易的基础上又考虑了热能交易,
满足用户的多样化需求。IER 作为源、荷之间的桥梁,基于供需关系,日前优化购入、售出的电价、热价,从供能侧购买电、热等能源,并出售给用能侧,从中赚取收益。IER 这一模式的引入,能够提供相比电网更加灵活的电价策略,对于引导分布式供能系统参与电力市场竞争、鼓励中小型社区用户科学用能都具有积极作用。在能源交易过程中,IER同样需要承担因价格波动、供需不平衡而带来的风险。当 CCHP 输出电功率无法满足负荷需求时,IER必须高价从电网购电。
新能源CCHP系统将新能源发电与传统燃料发电优势互补,基于能量梯级利用的原则,同时满足
用户电、热、冷不同的能量需求,其结构示意图如图 2 所示。文中新能源包含风电、光伏等,并采用最大化消纳原则。可控单元包括内燃发电机、燃气锅炉。内燃机发电的同时,缸套水和烟气中携带的热量可以通过余热装置回收再利用,并与燃气锅炉产生的热量一起,在冬季经热交换器供热,或夏季经吸收式制冷机转化为冷量为用户供冷。基于 IER的报价,运营商优化各设备的逐时出力,以获得更高的收益。
基于主从博弈的社区综合能源系统分布式协同优化运行策略研究
一、主从博弈理论在能源系统优化中的核心框架
主从博弈(Stackelberg Game)由德国经济学家Heinrich Von Stackelberg提出,其核心特征是领导者和追随者之间的分层决策机制。在社区综合能源系统(CIES)中,通常将能源供应商或聚合商作为领导者,制定价格策略或调度计划;而用户、微电网运营商等作为追随者,根据领导者策略调整自身用能行为以最大化收益。该模型的数学本质是双层优化问题:
- 上层模型:领导者以利润最大化为目标,决策变量包括能源价格(如电价、热价)或合同条款;
- 下层模型:追随者以成本最小化或效用最大化为目标,调整负荷需求或能源购买量。
均衡条件要求领导者和追随者均无法通过单方面改变策略获得更高收益,此时系统达到Stackelberg均衡。求解时,常通过KKT条件将下层模型转化为上层约束,将双层问题转化为单层优化问题。
二、社区综合能源系统的多能耦合与运行特点
CIES通过整合电、热、气、氢等多能源形式,实现能源梯级利用与互补(图1)。其核心组件包括:
- 能源生产:光伏、风电、燃气轮机、电转气(P2G)设备;
- 储能设备:电池、储氢罐、储热装置;
- 耦合设备:热电联产(CHP)、热泵、燃料电池;
- 智能控制:基于区块链或AI的分布式调度系统。
运行特点包括:
- 多时间尺度协调:短时波动(如光伏出力)需与储能的充放电策略匹配,长期需考虑季节性储能(如氢能跨季存储);
- 多主体利益冲突:能源供应商追求利润最大化,用户追求用能成本最低,储能运营商需平衡投资回收与辅助服务收益。
三、主从博弈在CIES中的典型应用案例
- 风光蓄电网优化调度
以区域电网为领导者,风电、光伏和储能运营商为追随者,通过动态电价引导清洁能源消纳。案例显示,弃风率和弃光率可降低15%-37%,电网负荷均方差减少0.64%-2.75%,提升系统稳定性。 - 多微电网协同定价
综合能源销售商作为领导者发布分时电价,微电网运营商根据电价调整冷热电联供设备出力。仿真表明,供能侧收益提升12%,用户消费者剩余增加8%。 - 电氢耦合系统管理
氢能运营商作为领导者制定氢价,用户通过电解槽和燃料电池实现电-氢转换。研究表明,电氢耦合技术可使系统生命周期利润提高21.3%,同时降低碳排放。
四、多主体协同机制与利益冲突分析
协同机制:
- 分层决策:通过主从博弈框架实现领导者与追随者的策略互动,避免集中式优化中的隐私泄露问题;
- 分布式算法:采用改进布谷鸟算法、粒子群算法等,结合隐私保护技术(如多方安全计算)确保数据安全。
利益冲突点:
- 收益分配不均:储能设备的投资回收周期长,需通过纳什谈判模型或Shapley值法实现公平分配;
- 社会接受度障碍:社区对可再生能源设施(如风力涡轮机)的“邻避效应”(NIMBYism)可能阻碍项目落地;
- 政策法规滞后:多能源耦合系统的监管框架尚未完善,尤其缺乏对热网、氢能网络的明确规则。
五、分布式优化算法设计与关键技术
- 模型求解方法:
- KKT转换法:将下层优化问题转化为均衡约束,适用于线性或凸优化场景;
- 智能算法融合:粒子群算法(PSO)与CPLEX结合,解决非凸问题并加速收敛。
- 不确定性处理:
- 分布鲁棒优化:利用切比雪夫不等式描述风电出力不确定性,生成典型场景降低计算复杂度;
- 动态权重调整:根据算法进度自动调整多目标权重,平衡经济性与环保目标。
- 隐私保护技术:
- 加密机制:在信息交互环节引入同态加密,保护用户负荷数据。
六、微电网、储能与热力网络的耦合关系
- 电-热耦合:
- 热电联产(CHP)设备将发电余热用于供暖,储热装置在电价低谷时段蓄热,高峰时段释放,降低用能成本;
- 热网惯性较大,可通过模型预测控制(MPC)实现与电网的跨时间尺度协调。
- 电-氢耦合:
- 电解槽在光伏出力过剩时制氢,燃料电池在负荷高峰时发电,实现跨季节能量转移;
- 氢储能系统与电池储能协同,前者解决长期能量平衡,后者应对短期波动。
- 多能流协同:
- 基于区块链的智能合约自动执行电、热、氢交易,降低交易成本。
七、多目标优化的约束与权重策略
- 约束条件:
- 物理约束:设备出力上限、储能充放电速率、网络潮流安全;
- 市场约束:碳排放配额、可再生能源消纳率。
- 权重分配方法:
- 静态权重法:根据政策优先级设定(如碳减排权重>经济性权重);
- 动态调整法:在算法迭代过程中逐步增加环保目标权重,引导搜索方向;
- Pareto前沿分析:生成非支配解集供决策者选择。
八、未来研究方向
- 跨链技术应用:结合区块链与主从博弈,实现多CIES间的跨社区能源交易;
- 数字孪生建模:构建高精度CIES数字镜像,提升博弈策略的实时性;
- 氢能深度整合:探索氢能作为二次能源载体在长周期储能中的规模化应用;
- 社会行为建模:将用户心理因素(如价格敏感度)纳入博弈模型,提高策略可行性。
结论
基于主从博弈的CIES分布式协同优化,通过分层决策机制平衡多主体利益,结合多能耦合技术与智能算法,显著提升了系统经济性、环保性与可靠性。未来需进一步突破跨链交易、数字孪生等技术瓶颈,推动社区能源系统向零碳智慧化演进。
📚2 运行结果
部分代码:
%燃气发电机、锅炉常数
ae=0.0013;
be=0.16;
ce=0;
ah=0.0005;
bh=0.11;
ch=0;
ce_ave=0.7;%平均电价约束
ch_ave=0.45;%平均热价约束
n_c=0.8;%热交换效率
n_ex=0.83; %余热回收效率
n_ice=0.35; %内燃机发电效率
%热储能
H_storage_max=1500; h_n=0.98;h_charge=0.98;h_discharge=1;%热储能容量/自损/充热/放热;
%电储能
E_storage_max=2000; e_n=1;e_charge=0.95;e_discharge=0.95;%电储能容量/自损/充电/放电;
bggin=1000;%%电储能
for i=1:24
B(1,i)=bggin+Pcharge(1,i)*e_charge-Pdischarge(1,i); % 0.98为转换率
bggin=B(1,i);
end
begin=1000;%%热储能
for i=1:24
L(1,i)=begin*h_n+h_charge*Hti(1,i)-Hto(1,i);%%%热储能容量
begin=L(1,i);
end
%约束条件
Constraints =[];
for i=1:24
Constraints=[Constraints,200<=L(1,i)<=H_storage_max];
end
Constraints=[Constraints,L(1,24)>=800];
for i=1:24
Constraints=[Constraints,0<=Hti(1,i)<=200*UHti(1,i)];
Constraints=[Constraints,0<=Hto(1,i)<=150*UHto(1,i)];
end
for i=1:23
Constraints=[Constraints,-300<=Hti(1,i+1)-Hto(1,i+1)-(Hti(1,i)-Hto(1,i))<=200];
end
for i=1:24
Constraints=[Constraints,UHti(1,i)+UHto(1,i)<=1];
end
%% 电储能容量约束、充电约束、放电约束、状态约束、SOC约束
for i=1:24
Constraints=[Constraints,0<=Pcharge(1,i)<=200*UPcharge(1,i)];
Constraints=[Constraints,0<=Pdischarge(1,i)<=200*UPdischarge(1,i)];
end
%% 蓄电池爬坡约束
for i=1:24
if i>0&&i<24
Constraints=[Constraints,-200<=Pcharge(1,i+1)-Pdischarge(1,i+1)-(Pcharge(1,i)-Pdischarge(1,i))<=200];
elseif i==24
Constraints=[Constraints,-200<=Pcharge(1,1)-Pdischarge(1,1)-(Pcharge(1,i)-Pdischarge(1,i))<=200];
end
end
%% 蓄电池充放电约束
for i=1:24
Constraints=[Constraints,UPcharge(1,i)+UPdischarge(1,i)<=1];
end
Constraints=[Constraints,sum(UPcharge(1,1:24)+UPdischarge(1,1:24))<=10];%考虑寿命
Constraints=[Constraints,B(1,24)==1000];
for i=1:24
Constraints=[Constraints,400<=B(1,i)<=1600];
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]王海洋,李珂,张承慧,马昕.基于主从博弈的社区综合能源系统分布式协同优化运行策略[J].中国电机工程学报,2020,40(17):5435-5445.DOI:10.13334/j.0258-8013.pcsee.200141.