多智能体系统的离散纳什均衡寻优算法研究(Matlab代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

多智能体系统中离散纳什均衡寻优算法研究

一、多智能体系统(MAS)的定义与特征

二、离散纳什均衡的数学定义与博弈论意义

三、离散纳什均衡寻优算法分类及对比

1. 进化算法

2. 群体智能算法

3. 强化学习(RL)方法

四、应用场景与典型案例

五、研究挑战与未来方向

六、典型文献与贡献

结论

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、数据下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

多智能体系统中离散纳什均衡寻优算法研究


一、多智能体系统(MAS)的定义与特征

多智能体系统是由多个具有自主决策能力的智能体构成的分布式系统,其核心特征包括:

  1. 自治性:每个智能体独立控制自身行为和状态。
  2. 容错性:部分智能体故障时,系统仍能通过自适应性维持运行。
  3. 分布式架构:智能体间通过通信协议协作,无全局控制中心。
  4. 可扩展性:系统支持动态增减智能体,适应任务需求变化。
  5. 涌现性:个体简单行为通过交互产生全局复杂智能。

典型应用场景包括无人机蜂群协作、智能电网优化、自动驾驶交通控制等。


二、离散纳什均衡的数学定义与博弈论意义

存在性条件

  • 策略空间有限且满足凸性假设时,至少存在一个混合策略均衡。
  • 纯策略均衡的存在性需满足特定网络结构(如树形拓扑)。

意义

  • 描述博弈的稳定状态,无单边偏离动机。
  • 在离散场景中,可能面临均衡点非唯一性或计算复杂度问题。

三、离散纳什均衡寻优算法分类及对比
1. 进化算法
  • 遗传算法(GA) :通过交叉、变异和选择模拟自然进化,适用于全局搜索,但可能陷入局部最优。
  • 差分进化(DE) :基于差分扰动生成新解,收敛速度快,适合高维离散优化。
2. 群体智能算法
  • 粒子群优化(PSO) :模拟鸟群协作,通过位置-速度模型更新策略,简单高效但需调参。
  • 蚁群算法(ACO) :基于信息素路径选择,擅长组合优化(如资源调度),但计算复杂度高。
  • 灰狼优化(GWO) :层级捕猎机制平衡全局与局部搜索,参数少且鲁棒性强。
3. 强化学习(RL)方法
  • Nash-Q学习:结合Q-learning与纳什均衡,需集中式训练与分布式执行。
  • 动态图形游戏算法:利用汉密尔顿-雅可比方程求解局部最优响应,支持在线学习。

算法对比

算法类型收敛性复杂度适用场景
遗传算法全局收敛较慢多目标组合优化
粒子群优化快速收敛连续/离散空间参数优化
蚁群算法全局搜索能力强路径规划、任务调度
差分进化高维收敛稳健低-中复杂系统参数优化
强化学习需环境交互验证动态调整实时决策场景

四、应用场景与典型案例
  1. 自动驾驶交通控制

    • 问题:多车辆在交叉路口协同避撞与路径优化。
    • 方法:基于纳什均衡的MARL框架,通过收益矩阵建模策略交互。
    • 优势:避免单智能体局部优化导致的系统冲突。
  2. 无人机蜂群任务分配

    • 问题:多无人机协同执行侦察或攻击任务。
    • 方法:离散博弈模型结合PSO算法,平衡任务效率与能耗。
  3. 智能电网调度

    • 问题:多能源主体(如风电、储能)的博弈式经济调度。
    • 方法:Nash-Q算法实现分布式优化,收敛至均衡电价策略。
  4. 资源受限项目调度(RCPS)

    • 问题:多项目共享资源时的冲突协调。
    • 方法:纯纳什均衡启发式算法,通过逆向任务插入优化完成时间。

五、研究挑战与未来方向
  1. 计算复杂度:离散策略空间随智能体数量指数增长,需设计低复杂度近似算法。
  2. 动态环境适应性:在线学习算法需兼顾收敛速度与策略稳定性。
  3. 异构智能体兼容性:异质目标与通信协议下的均衡求解机制。
  4. 多目标均衡扩展:Pareto最优与纳什均衡的联合优化框架。

六、典型文献与贡献
  1. 动态图形游戏理论:提出基于通信图结构的纳什均衡定义,强化学习算法实现分布式求解。
  2. 贝叶斯纳什均衡收敛性:研究离散化处理下无限类型博弈的均衡收敛条件。
  3. 改进纳什遗传算法:结合交叉变异操作优化混合变量行动计划池。
  4. 耦合约束聚合博弈:设计分布式算法处理多智能体耦合约束下的均衡寻求。

结论

离散纳什均衡寻优是多智能体系统协同决策的核心问题,需综合博弈论、优化算法与分布式计算技术。未来研究需进一步解决大规模异构系统的计算效率、动态环境下的鲁棒性以及多目标均衡的协同优化等挑战。

📚2 运行结果

可视化代码:

figure1=figure;
axes1 = axes('Parent',figure1);
hold on
for i=1:1:n
    plot(xo(i,:),'--','linewidth',2)
    plot(xx(i,:),'linewidth',2)
end
grid on
set(gca,'GridLineStyle',':','GridColor','k','GridAlpha',1);
box on
set(axes1,'FontSize',12,'FontName','Times New Roman');
h3=xlabel('Time (k) ');
set(h3,'Interpreter','none','FontSize',12,'FontName','Times New Roman');
h4=ylabel('${x}_{i,k}$ ');
set(h4,'Interpreter','latex','FontSize',14)
xlim([0 N0])




figure1=figure;
axes1 = axes('Parent',figure1);
hold on
for i=1:1:n
    plot(Tildex(i,:),'linewidth',2)
end
grid on
set(gca,'GridLineStyle',':','GridColor','k','GridAlpha',1);
box on
set(axes1,'FontSize',12,'FontName','Times New Roman');
h3=xlabel('Time (k) ');
set(h3,'Interpreter','none','FontSize',12,'FontName','Times New Roman');
h4=ylabel('$\vec{x}_{k}$ ');
set(h4,'Interpreter','latex','FontSize',14)
xlim([0 N0])


figure1=figure;
axes1 = axes('Parent',figure1);
plot(eabs2(1,:),'--','linewidth',2)
hold on
plot(Threshold(1,:),'-','linewidth',2)
grid on
set(gca,'GridLineStyle',':','GridColor','k','GridAlpha',1);
box on
set(axes1,'FontSize',12,'FontName','Times New Roman');
h3=xlabel('Time (k) ');
set(h3,'Interpreter','none','FontSize',12,'FontName','Times New Roman');
h4=ylabel(' Amplitude ');
set(h4,'Interpreter','none','FontSize',12,'FontName','Times New Roman');
legend1=legend('$\|{e}_{1,k}\|^2$ ','$\epsilon_{\hat{x}_k^1}+\zeta_{1,k}/\kappa_1$ ');
set(legend1,'Interpreter','latex','FontSize',14)
xlim([0 100])

axes2=axes('Position',[0.42 0.28 0.28 0.25]);
plot(eabs2(1,80:100),'--','linewidth',2)
hold on
plot(Threshold(1,80:100),'-','linewidth',2)
grid on
set(gca,'GridLineStyle',':','GridColor','k','GridAlpha',1);
box on
set(axes2,'XTickLabel',{'80','85','90','95','100'},...
    'XTick',[1 6 11 16 21],'FontSize',12,'FontName','Times New Roman');
xlim([1 21])




figure1=figure;
axes1 = axes('Parent',figure1);
hold on
for i=1:1:n
    plot(zeta(i,:),'linewidth',2)
end
grid on
set(gca,'GridLineStyle',':','GridColor','k','GridAlpha',1);
box on
set(axes1,'FontSize',12,'FontName','Times New Roman');
h3=xlabel('Time (k) ');
set(h3,'Interpreter','none','FontSize',12,'FontName','Times New Roman');
h4=ylabel('$\zeta_{i,k}$');
set(h4,'Interpreter','latex','FontSize',14)
xlim([0 100])
legend1=legend('$\zeta_{1,k}$','$\zeta_{2,k}$','$\zeta_{3,k}$','$\zeta_{4,k}$','$\zeta_{5,k}$','$\zeta_{6,k}$','$\zeta_{7,k}$');
set(legend1,'Interpreter','latex','FontSize',12)
axes2=axes('Position',[0.42 0.28 0.28 0.25]);
hold on
for i=1:1:n
    plot(zeta(i,80:100),'linewidth',2)
end
grid on
set(gca,'GridLineStyle',':','GridColor','k','GridAlpha',1);
box on
set(axes2,'XTickLabel',{'80','85','90','95','100'},...
    'XTick',[1 6 11 16 21],'FontSize',12,'FontName','Times New Roman');
xlim([1 21])
ylim([-0.002 0.015])

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]牛付喜.多智能体集群博弈的分布式纳什均衡搜索算法研究[D].中南大学,2022.

[2]控制科学与工程;控制理论与控制工程.基于广义扩展状态观测器的多智能体系统纳什均衡搜索[D].[2025-02-19].

[3]熊天娇,王朝立.基于零和博弈的部分未知线性离散系统多智能体分布式最优跟踪控制[J].应用数学进展, 2022, 11(1):22.

🌈Matlab代码、数据下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值