RNA 测序技术概览(RNA-seq)

前言

转录组测序(RNA-seq)是当下最流行的二代测序(NGS)方法之一,使科研工作者实现在转录水平上定量、定性的研究,它的出现已经革命性地改变了人们研究基因表达调控的方式。然而,转录组测序(RNA-seq)其实是广泛的概念,面对众多的RNA-Seq技术,常常难以选择最合适的方法。本文将概述几种主要的 RNA-Seq 技术,并探讨它们的应用和优势。

转录组测序技术(RNA-seq Tech.)

下面的表格比较了几种常见的 RNA-Seq 测序方法,并对每种方法进行了简述。熟悉这些技术将有助于我在设计实验时做出明智的决定

RNA-Seq分析方法比较

类型目标RNARNA选择方法起始材料相对成本
mRNA-SeqmRNAPoly(A)选择:利用mRNA尾部的poly(A)尾巴进行分离总RNA、细胞、组织🙂
总RNA-SeqmRNA + lncRNA去除核糖体RNA,留下其他类型的RNA总RNA、细胞、组织🙂🙂
链特异性 RNA-SeqmRNA和/或lncRNAPoly(A)选择或rRNA去除总RNA、细胞、组织🙂🙂
小RNA-Seq小非编码 RNA(miRNA、siRNA、piRNA)尺寸分级分离(通过大小分离小RNA,并连接接头到5’磷酸用于测序)总RNA、细胞、组织🙂🙂
超低起始量RNA-SeqmRNAPoly(A)选择总RNA(<500 ng)或细胞(<10,000)🙂🙂🙂
单细胞RNA-SeqmRNA分离单个细胞后的Poly(A)选择 补充说明:用于研究单个细胞的基因表达差异。细胞/细胞核🙂🙂🙂🙂
Iso-Seq全长 mRNAPoly(A)选择总RNA🙂🙂🙂🙂

mRNA = 信使RNA,编码蛋白质的RNA
lncRNA = 长链非编码RNA,不编码蛋白质但具有调控功能的RNA
miRNA = 微小RNA,调控基因表达
siRNA = 小干扰RNA,参与RNA干扰
piRNA = Piwi相互作用RNA,与生殖细胞发育相关
rRNA = 核糖体RNA

信使RNA测序 (mRNA-Seq)

在真核生物中,成熟mRNA转录本具有5’端帽子结构和3’端多聚腺苷酸尾,可通过poly(A)选择特异性富集。具体步骤包括:首先提取总RNA,随后利用寡聚(dT)偶联的磁珠/柱进行杂交,或使用寡聚(dT)引物进行逆转录。由于多聚腺苷酸化的RNA分子在大多数物种中仅占总RNA的1-5%,因此poly(A)选择后的样品浓度通常会降低20-100倍。纯化的mRNA随后被转化为cDNA文库,并通过PCR扩增以提高文库浓度。值得注意的是,PCR扩增可能引入偏差,建议使用最少的扩增循环数(通常12-15个循环)。此外,poly(A)选择可能导致3’端偏差,特别是在RNA部分降解的样本中。尽管存在这些局限性,poly(A)选择仍是真核mRNA文库制备中最经济且最广泛使用的方法。

总RNA测序 (Total RNA-Seq)

总RNA-Seq适用于对蛋白质编码RNA和各类非编码RNA进行全面分析。这些非编码RNA包括长链非编码RNA (lncRNA)、环状RNA (circRNA)和其他调控RNA。特别是lncRNA,它们在基因组中具有重要的表观遗传调控功能,但由于很多lncRNA缺乏poly(A)尾,在常规mRNA-Seq中往往被忽略。在总RNA-Seq中,需要先去除占比高达80-90%的核糖体RNA (rRNA)。主要的rRNA去除方法包括:

  1. Ribo-Zero技术:使用与rRNA互补的生物素化探针;
  2. RNase H方法:使用DNA寡核苷酸引导RNase H特异性降解rRNA;
  3. rRNA反义寡核苷酸捕获法:使用互补序列直接捕获并去除rRNA;

链特异性RNA测序 (Strand-Specific RNA-Seq)

转录本的极性信息对于基因功能注释和转录组分析至关重要。由于真核基因组中存在大量重叠基因和反义转录本,识别转录本的来源链可以提供重要的调控信息。然而,在标准RNA-Seq文库制备过程中,转录本的极性信息常常丢失。链特异性RNA-Seq通过特殊的文库制备方法保留了这些关键信息。主要的链特异性文库构建方法包括:

  • dUTP第二链标记法:在第二链cDNA合成时加入dUTP,后续选择性降解含U链(如下图);
  • 5’端接头连接法:利用RNA分子5’端的帽子结构定向连接接头;
  • 3’端接头连接法:在RNA片段化后进行定向接头连接;
  • 链特异性测序可以与mRNA-Seq或总RNA-Seq结合使用,能够:准确鉴定反义转录本;分析重叠基因的表达;研究顺式/反式调控元件;提高转录组拼接的准确性等;
    在这里插入图片描述

链特异性RNA文库制备。在第二链合成过程中掺入dUTP以及随后的尿嘧啶特异性消化可以选择性地保留第一链cDNA

小RNA测序 (Small RNA-Seq)

小 RNA,如 microRNA (miRNA) 和小干扰 RNA (siRNA),在基因调控中发挥着重要作用。Small RNA-Seq 通过尺寸分级分离从总 RNA 中选择小 RNA 进行测序。文库制备通常包括将测序接头连接到 Dicer 修饰的小 RNA 5’ 磷酸末端。小 RNA 片段随后被逆转录成 cDNA 并进行测序。由于小 RNA 分子长度较短 (可短至 21 个核苷酸),可以使用较少的测序循环数 (例如 1×50 bp)。

超低起始量RNA测序 (Ultra-Low Input RNA-Seq)

标准 RNA-Seq 方法通常需要大量的完整 RNA (>500 ng)。对于 RNA 产量低或降解的样品,需要额外的扩增步骤和更高的测序深度以提高数据输出,但这容易导致转录偏差。超低起始量 RNA-Seq 方法能够选择性扩增全长转录本,同时最大限度地减少偏差,使得研究人员能够对少量细胞的样品进行 RNA-Seq。

单细胞RNA测序 (scRNA-Seq)

与传统的“批量”RNA-Seq 不同,scRNA-Seq 能够捕获单个细胞的转录组,揭示复杂细胞群体中基因表达的异质性。scRNA-Seq 通常使用微流体(华大、10X等)或微孔技术(华大、BD、新格元等)分离单个细胞,并在文库制备过程中为每个转录本添加唯一的条形码,以便通过生物信息学分析追溯到其来源细胞。
在这里插入图片描述

全长转录本测序 (Iso-Seq)

Iso-Seq 技术,例如 PacBio® 开发的平台,使用长读长测序技术对全长转录本进行测序,无需组装。 这使得能够直接识别转录本起始位点、多聚腺苷酸化位点和剪接位点。Iso-Seq 可用于表征转录组中的所有异构体,其应用包括基因组注释、基因融合检测和新异构体的发现。可变剪接导致单个基因编码多种异构体,这可以通过Iso-Seq有效地进行分析。
在这里插入图片描述

选择指南

选择合适的 RNA-Seq 测定方法取决于几个因素,包括:实验目标、感兴趣的 RNA 种类(编码、非编码或两者)
、材料、是否有参考转录组等。准确定义生物学问题至关重要,有一个清晰而具体的目标将帮助确定需要哪种类型的 NGS 数据,进而确定哪种 RNA-Seq 方法最合适。 下面是一个简化的树,可以辅助决策
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值