- § 8 反常二重积分
前面我们是在有界区域上讨论有界函数的二重积分.
本节将研究无界区域上或无界函数的二重积分.
一、无界区域上的二重积分
定义 1 设 f ( x , y ) f(x, y) f(x,y) 为定义在无界区域 D D D 上的二元函数.
若对于平面上任一包围原点的光滑封闭曲线 γ , f ( x , y ) \gamma, f(x, y) γ,f(x,y) 在曲线 γ \gamma γ
所围的有界区域 E γ E_{\gamma} Eγ 与 D D D 的交集 E γ ∩ D = D γ E_{\gamma} \cap D=D_{\gamma} Eγ∩D=Dγ
(图
21-43) 上恒可积. 令
d γ = inf { x 2 + y 2 ∣ ( x , y ) ∈ γ } . d_{\gamma}=\inf \left\{\sqrt{x^{2}+y^{2}} \mid(x, y) \in \gamma\right\} . dγ=inf{
x2+y2∣(x,y)∈γ}.
若极限
lim d y → + ∞ ∬ D y f ( x , y ) d σ \lim \limits_{d_{y} \rightarrow+\infty} \iint_{D_{y}} f(x, y) \mathrm{d} \sigma dy→+∞lim∬Dyf(x,y)dσ
存在且有限, 且与 γ \gamma γ 的取法无关, 则称 f ( x , y ) f(x, y) f(x,y) 在 D D D
上的反常二重积分收敛, 并记
∬ D f ( x , y ) d σ = lim d y → + ∞ ∬ D y f ( x , y ) d σ , \iint_{D} f(x, y) \mathrm{d} \sigma=\lim \limits_{d_{y} \rightarrow+\infty} \iint_{D_{y}} f(x, y) \mathrm{d} \sigma, ∬Df(x,y)dσ=dy→+∞lim∬Dyf(x,y)dσ,
否则称 f ( x , y ) f(x, y) f(x,y) 在 D D D 上的反常二重积分发散, 或简称
∬ D f ( x , y ) d σ \iint_{D} f(x, y) \mathrm{d} \sigma ∬Df(x,y)dσ 发散.
定理 21.17 设在无界区域 D D D 上 f ( x , y ) ⩾ 0 , γ 1 f(x, y) \geqslant 0, \gamma_{1} f(x,y)⩾0,γ1,
γ 2 , ⋯ , γ n , ⋯ \gamma_{2}, \cdots, \gamma_{n}, \cdots γ2,⋯,γn,⋯
为一列包围原点的光滑封闭曲线序列, 满足
(i)
d n = inf { x 2 + y 2 ∣ ( x , y ) ∈ γ n } → + ∞ ( n → ∞ ) d_{n}=\inf \left\{\sqrt{x^{2}+y^{2}} \mid(x, y) \in \gamma_{n}\right\} \rightarrow+\infty \quad(n \rightarrow \infty) dn=inf{
x2+y2∣(x,y)∈γn}→+∞(n→∞),
(ii)
I = sup n ∬ D n f ( x , y ) d σ < + ∞ I=\sup _{n} \iint_{D_{n}} f(x, y) \mathrm{d} \sigma<+\infty I=supn∬Dnf(x,y)dσ<+∞,{width=“186px”}
图 21-43
其中 D n D_{n} Dn 为 γ n \gamma_{n} γn 所围的有界区域 E n E_{n} En 与 D D D 的交集,
则反常二重积分 (1) 收敛,并且
∬ D f ( x , y ) d σ = I . \iint_{D} f(x, y) \mathrm{d} \sigma=I . ∬Df(x,y)dσ=I.
证 设 γ ′ \gamma^{\prime} γ′ 为任何包围原点的光滑封闭曲线,
这曲线所围的区域记为 E ′ E^{\prime} E′, 并记 D ′ = D^{\prime}= D′=
E ′ ∩ D E^{\prime} \cap D E′∩D. 因为
lim n → ∞ d n = + ∞ \lim \limits_{n \rightarrow \infty} d_{n}=+\infty n→∞limdn=+∞, 因此存在 n n n, 使得
D ′ ⊂ D n ⊂ D D^{\prime} \subset D_{n} \subset D D′⊂Dn⊂D. 由于 f ( x , y ) ⩾ 0 f(x, y) \geqslant 0 f(x,y)⩾0, 所以有
∬ D ′ f ( x , y ) d σ ⩽ ∬ D n f ( x , y ) d σ ⩽ I . \iint_{D^{\prime}} f(x, y) \mathrm{d} \sigma \leqslant \iint_{D_{n}} f(x, y) \mathrm{d} \sigma \leqslant I . ∬D′f(x,y)dσ⩽∬Dnf(x,y)dσ⩽I.
另一方面,因为
I = sup n ∬ D n f ( x , y ) d σ , I=\sup _{n} \iint_{D_{n}} f(x, y) \mathrm{d} \sigma, I=nsup∬Dnf(x,y)dσ,
对于任给的 ε > 0 \varepsilon>0 ε>0, 总有 n 0 n_{0} n0, 使得
∬ D n 0 f ( x , y ) d σ > I − ε . \iint_{D_{n_{0}}} f(x, y) \mathrm{d} \sigma>I-\varepsilon . ∬Dn0f(x,y)dσ>I−ε.
对于充分大的 d ′ d^{\prime} d′, 区域 D ′ D^{\prime} D′ 又可包含 D n 0 D_{n_{0}} Dn0, 因而
∬ D ′ f ( x , y ) d σ > I − ε \iint_{D^{\prime}} f(x, y) \mathrm{d} \sigma>I-\varepsilon ∬
数学分析(二十一)-重积分8-反常二重积分1:无界区域上的二重积分
于 2024-02-02 21:16:24 首次发布