数学分析(二十一)-重积分8-反常二重积分1:无界区域上的二重积分

本文深入探讨了无界区域上或无界函数的二重积分,特别是反常二重积分的概念。通过定义、定理和例子阐述了在无界区域上函数的反常二重积分的收敛条件,如函数非负性、有界子区域积分有界等,并给出了反常积分存在性的判别准则,如柯西判别法。
摘要由CSDN通过智能技术生成

- § 8 反常二重积分
前面我们是在有界区域上讨论有界函数的二重积分.
本节将研究无界区域上或无界函数的二重积分.
一、无界区域上的二重积分
定义 1 设 f ( x , y ) f(x, y) f(x,y) 为定义在无界区域 D D D 上的二元函数.
若对于平面上任一包围原点的光滑封闭曲线 γ , f ( x , y ) \gamma, f(x, y) γ,f(x,y) 在曲线 γ \gamma γ
所围的有界区域 E γ E_{\gamma} Eγ D D D 的交集 E γ ∩ D = D γ E_{\gamma} \cap D=D_{\gamma} EγD=Dγ
(图
21-43) 上恒可积. 令
d γ = inf ⁡ { x 2 + y 2 ∣ ( x , y ) ∈ γ } . d_{\gamma}=\inf \left\{\sqrt{x^{2}+y^{2}} \mid(x, y) \in \gamma\right\} . dγ=inf{ x2+y2 (x,y)γ}.
若极限
lim ⁡ d y → + ∞ ∬ D y f ( x , y ) d σ \lim \limits_{d_{y} \rightarrow+\infty} \iint_{D_{y}} f(x, y) \mathrm{d} \sigma dy+limDyf(x,y)dσ
存在且有限, 且与 γ \gamma γ 的取法无关, 则称 f ( x , y ) f(x, y) f(x,y) D D D
上的反常二重积分收敛, 并记
∬ D f ( x , y ) d σ = lim ⁡ d y → + ∞ ∬ D y f ( x , y ) d σ , \iint_{D} f(x, y) \mathrm{d} \sigma=\lim \limits_{d_{y} \rightarrow+\infty} \iint_{D_{y}} f(x, y) \mathrm{d} \sigma, Df(x,y)dσ=dy+limDyf(x,y)dσ,
否则称 f ( x , y ) f(x, y) f(x,y) D D D 上的反常二重积分发散, 或简称
∬ D f ( x , y ) d σ \iint_{D} f(x, y) \mathrm{d} \sigma Df(x,y)dσ 发散.
定理 21.17 设在无界区域 D D D f ( x , y ) ⩾ 0 , γ 1 f(x, y) \geqslant 0, \gamma_{1} f(x,y)0,γ1,
γ 2 , ⋯   , γ n , ⋯ \gamma_{2}, \cdots, \gamma_{n}, \cdots γ2,,γn,
为一列包围原点的光滑封闭曲线序列, 满足
(i)
d n = inf ⁡ { x 2 + y 2 ∣ ( x , y ) ∈ γ n } → + ∞ ( n → ∞ ) d_{n}=\inf \left\{\sqrt{x^{2}+y^{2}} \mid(x, y) \in \gamma_{n}\right\} \rightarrow+\infty \quad(n \rightarrow \infty) dn=inf{ x2+y2 (x,y)γn}+(n),
(ii)
I = sup ⁡ n ∬ D n f ( x , y ) d σ < + ∞ I=\sup _{n} \iint_{D_{n}} f(x, y) \mathrm{d} \sigma<+\infty I=supnDnf(x,y)dσ<+,外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“186px”}
图 21-43
其中 D n D_{n} Dn γ n \gamma_{n} γn 所围的有界区域 E n E_{n} En D D D 的交集,
则反常二重积分 (1) 收敛,并且
∬ D f ( x , y ) d σ = I . \iint_{D} f(x, y) \mathrm{d} \sigma=I . Df(x,y)dσ=I.
证 设 γ ′ \gamma^{\prime} γ 为任何包围原点的光滑封闭曲线,
这曲线所围的区域记为 E ′ E^{\prime} E, 并记 D ′ = D^{\prime}= D=
E ′ ∩ D E^{\prime} \cap D ED. 因为
lim ⁡ n → ∞ d n = + ∞ \lim \limits_{n \rightarrow \infty} d_{n}=+\infty nlimdn=+, 因此存在 n n n, 使得
D ′ ⊂ D n ⊂ D D^{\prime} \subset D_{n} \subset D DDnD. 由于 f ( x , y ) ⩾ 0 f(x, y) \geqslant 0 f(x,y)0, 所以有
∬ D ′ f ( x , y ) d σ ⩽ ∬ D n f ( x , y ) d σ ⩽ I . \iint_{D^{\prime}} f(x, y) \mathrm{d} \sigma \leqslant \iint_{D_{n}} f(x, y) \mathrm{d} \sigma \leqslant I . Df(x,y)dσDnf(x,y)dσI.
另一方面,因为
I = sup ⁡ n ∬ D n f ( x , y ) d σ , I=\sup _{n} \iint_{D_{n}} f(x, y) \mathrm{d} \sigma, I=nsupDnf(x,y)dσ,
对于任给的 ε > 0 \varepsilon>0 ε>0, 总有 n 0 n_{0} n0, 使得
∬ D n 0 f ( x , y ) d σ > I − ε . \iint_{D_{n_{0}}} f(x, y) \mathrm{d} \sigma>I-\varepsilon . Dn0f(x,y)dσ>Iε.
对于充分大的 d ′ d^{\prime} d, 区域 D ′ D^{\prime} D 又可包含 D n 0 D_{n_{0}} Dn0, 因而
∬ D ′ f ( x , y ) d σ > I − ε \iint_{D^{\prime}} f(x, y) \mathrm{d} \sigma>I-\varepsilon

  • 11
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值