高等代数 多项式环(第7章)2 公因式,因式分解,重因式

一.公因式与最大公因式(7.3)
1.公因式与最大公因式
(1)定义:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意: 0 0 0 0 0 0 0 0 0的最大公因式,由于此时没有次数最高的公因式,故用次数最高作为最大公因式的定义不能包含所有情况,此时最大公因式是所有公因式中次数最小的

(2)最大公因式的存在性与求法:

引理:设 f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)∈K[x] f(x),g(x)K[x],如果在 K [ x ] K[x] K[x]中有下述等式成立: f ( x ) = h ( x ) g ( x ) + r ( x ) ( 1 ) f(x)=h(x)g(x)+r(x)\qquad(1) f(x)=h(x)g(x)+r(x)(1) c ( x )   ∣   f ( x ) c(x)\,|\,f(x) c(x)f(x) c ( x )   ∣   g ( x ) ⇔ c ( x )   ∣   g ( x ) c(x)\,|\,g(x)⇔c(x)\,|\,g(x) c(x)g(x)c(x)g(x) c ( x )   ∣   r ( x c(x)\,|\,r(x c(x)r(x;从而, d ( x ) d(x) d(x) f ( x ) f(x) f(x) g ( x ) g(x) g(x)的最大公因式当且仅当 d ( x ) d(x) d(x) g ( x ) g(x) g(x) r ( x ) r(x) r(x)的最大公因式
在这里插入图片描述
在这里插入图片描述

定理1:对于 K [ x ] K[x] K[x]中的 ∀ 2 ∀2 2个多项式 f ( x ) , g ( x ) f(x),g(x) f(x),g(x), ∃ ∃ 它们的1个最大公因式 d ( x ) d(x) d(x),并且 ∃ u ( x ) , v ( x ) ∈ K [ x ] ∃u(x),v(x)∈K[x] u(x),v(x)K[x],使得 d ( x ) = u ( x ) f ( x ) + v ( x ) g ( x ) ( 2 ) d(x)=u(x)f(x)+v(x)g(x)\qquad(2) d(x)=u(x)f(x)+v(x)g(x)(2)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在求 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的最大公因式时,利用下述命题可以降低计算量
命题1:设 f ( x ) , g ( x ) ∈ K [ x ] , a , b ∈ K ∗ f(x),g(x)∈K[x],a,b∈K^* f(x),g(x)K[x],a,bK,则 d ( x ) d(x) d(x) f ( x ) f(x) f(x) g ( x ) g(x) g(x)的1个最大公因式当且仅当 d ( x ) d(x) d(x) a f ( x ) af(x) af(x) b g ( x ) bg(x) bg(x)的1个最大公因式
在这里插入图片描述

(3)最大公因式的性质:

命题2:在 K [ x ] K[x] K[x]中,设 d ( x ) d(x) d(x) f ( x ) f(x) f(x) g ( x ) g(x) g(x)的1个最大公因式,则对于 ∀ a ∈ K ∗ ∀a∈K^* aK都有 a d ( x ) ad(x) ad(x) f ( x ) f(x) f(x) g ( x ) g(x) g(x)的最大公因式
在这里插入图片描述
在这里插入图片描述

命题3:设 f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)\in K[x] f(x),g(x)K[x],数域 F ⊇ K F\supe K FK,则 f ( x ) f(x) f(x) g ( x ) g(x) g(x) K [ x ] K[x] K[x]中的首一最大公因式等于它们在 F [ x ] F[x] F[x]中的首一最大公因式,即 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的首一最大公因式不随数域的扩大而改变
在这里插入图片描述

2.互素的多项式
在这里插入图片描述
(1)定义:
在这里插入图片描述
(2)判定:

定理2: K [ x ] K[x] K[x]中的2个多项式 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)互素的充要条件是: ∃ u ( x ) , v ( x ) ∈ K [ x ] ∃u(x),v(x)\in K[x] u(x),v(x)K[x],使得 u ( x ) f ( x ) + v ( x ) g ( x ) = 1 ( 3 ) u(x)f(x)+v(x)g(x)=1\qquad(3) u(x)f(x)+v(x)g(x)=1(3)
在这里插入图片描述

(命题3的)推论1:设 f ( x ) , g ( x ) ∈ K [ x ] f(x),g(x)\in K[x] f(x),g(x)K[x],数域 F ⊇ K F\supe K FK,则 f ( x ) f(x) f(x)与g(x)在 K [ x ] K[x] K[x]中互素当且仅当 f ( x ) f(x) f(x) g ( x ) g(x) g(x) F [ x ] F[x] F[x]中互素
在这里插入图片描述

(3)性质:

性质1:在 K [ x ] K[x] K[x]中,如果 f ( x )   ∣   g ( x ) h ( x ) , ( f ( x ) , g ( x ) ) = 1 f(x)\,|\,g(x)h(x),(f(x),g(x))=1 f(x)g(x)h(x),(f(x),g(x))=1那么 f ( x )   ∣   h ( x ) f(x)\,|\,h(x) f(x)h(x)
在这里插入图片描述
在这里插入图片描述

性质2:在 K [ x ] K[x] K[x]中,如果 f ( x )   ∣   h ( x ) , g ( x )   ∣   h ( x ) , ( f ( x ) , g ( x ) ) = 1 f(x)\,|\,h(x),g(x)\,|\,h(x),(f(x),g(x))=1 f(x)h(x),g(x)h(x),(f(x),g(x))=1那么 f ( x ) g ( x )   ∣   h ( x ) f(x)g(x)\,|\,h(x) f(x)g(x)h(x)
在这里插入图片描述

性质3:在 K [ x ] K[x] K[x]中,如果 ( f ( x ) , h ( x ) ) = 1 , ( g ( x ) , h ( x ) ) = 1 , (f(x),h(x))=1,(g(x),h(x))=1, (f(x),h(x))=1,(g(x),h(x))=1,那么 ( f ( x ) g ( x ) , h ( x ) ) = 1 (f(x)g(x),h(x))=1 (f(x)g(x),h(x))=1
可推广为:若 ( f i ( x ) , h ( x ) ) = 1   ( i = 1 , 2... s ) (f_i(x),h(x))=1\,(i=1,2...s) (fi(x),h(x))=1(i=1,2...s),则 ( f 1 ( x ) f 2 ( x ) . . . f s ( x ) , h ( x ) ) = 1 (f_1(x)f_2(x)...f_s(x),h(x))=1 (f1(x)f2(x)...fs(x),h(x))=1

3.推广到多个多项式的情况
(1)最大公因式的定义:
在这里插入图片描述
(2)最大公因式的存在性:

用数学归纳法可以证明:在 K [ x ] K[x] K[x]中, ∀ s ≥ 2 ∀s≥2 s2个多项式 f 1 ( x ) , f 2 ( x ) . . . f s ( x ) f_1(x),f_2(x)...f_s(x) f1(x),f2(x)...fs(x)的最大公因式存在
在这里插入图片描述
在这里插入图片描述

(3)互素的定义:
在这里插入图片描述
(4)互素的判定:

定理3:在 K [ x ] K[x] K[x]中, f 1 ( x ) , f 2 ( x ) . . . f s ( x ) f_1(x),f_2(x)...f_s(x) f1(x),f2(x)...fs(x)互素的充要条件是: ∃ u 1 ( x ) , u 2 ( x ) . . . u s ( x ) ∈ K [ x ] ∃u_1(x),u_2(x)...u_s(x)∈K[x] u1(x),u2(x)...us(x)K[x],使得 u 1 ( x ) f 1 ( x ) + u 2 ( x ) f 2 ( x ) + . . . u s ( x ) f s ( x ) = 1 ( 8 ) u_1(x)f_1(x)+u_2(x)f_2(x)+...u_s(x)f_s(x)=1\qquad(8) u1(x)f1(x)+u2(x)f2(x)+...us(x)fs(x)=1(8)
注意: s ≥ 3 s≥3 s3个多项式互素时,它们不一定两两互素,如设 f 1 ( x ) = x + 1 , f 2 ( x ) = x 2 + 3 x + 2 , f 3 ( x ) = x − 1 f_1(x)=x+1,f_2(x)=x^2+3x+2,f_3(x)=x-1 f1(x)=x+1,f2(x)=x2+3x+2,f3(x)=x1 ( f 1 ( x ) , f 2 ( x ) ) = x + 1 , ( f 1 ( x ) , f 2 ( x ) , f 3 ( x ) ) = 1 (f_1(x),f_2(x))=x+1,(f_1(x),f_2(x),f_3(x))=1 (f1(x),f2(x))=x+1,(f1(x),f2(x),f3(x))=1,因此 f 1 ( x ) , f 2 ( x ) , f 3 ( x ) f_1(x),f_2(x),f_3(x) f1(x),f2(x),f3(x)互素而 f 1 ( x ) , f 2 ( x ) f_1(x),f_2(x) f1(x),f2(x)不互素

4.推广到整数环上的情况
(1)最大公约数:
在这里插入图片描述

定理4:对 ∀ a , b ∈ Z ∀a,b∈Z a,bZ,都存在它们的1个最大公因数 d d d,并且 ∃ u , v ∈ Z ∃u,v∈Z u,vZ,使得 u a + v b = d ( 9 ) ua+vb=d\qquad(9) ua+vb=d(9)
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(2)互素:
在这里插入图片描述

定理5: a , b ∈ Z a,b∈Z a,bZ互素当且仅当 ∃ u , v ∈ Z ∃u,v∈Z u,vZ,使得 u a + v b = 1 ( 10 ) ua+vb=1\qquad(10) ua+vb=1(10)

互素的整数的性质:
①若 a   ∣   b c a\,|\,bc abc ( a , b ) = 1 (a,b)=1 (a,b)=1,则 a   ∣   c a\,|\,c ac
②若 a   ∣   c , b   ∣   c a\,|\,c,b\,|\,c ac,bc ( a , b ) = 1 (a,b)=1 (a,b)=1,则 a   ∣   b c a\,|\,bc abc
③若 ( a , c ) = 1 , ( b , c ) = 1 (a,c)=1,(b,c)=1 (a,c)=1,(b,c)=1,则 ( a b , c ) = 1 (ab,c)=1 (ab,c)=1
③的推广:

在这里插入图片描述
(3)最小公倍数:
在这里插入图片描述
5. λ − λ- λ矩阵的行列式因子(最大公因式的应用之一)
(1) λ − λ- λ矩阵的行列式因子:
在这里插入图片描述

定理6:相抵的 λ − λ- λ矩阵,它们的秩相等,并且各阶行列式因子也对应相等
在这里插入图片描述

(2)相抵标准形的唯一性::

定理7: n n n λ − λ- λ矩阵 A ( λ ) A(λ) A(λ)的相抵标准形是唯一的
在这里插入图片描述
在这里插入图片描述

(3)不变因子:
在这里插入图片描述

定理8:2个 n n n λ − λ- λ矩阵相抵的充要条件是它们有相同的不变因子,或者有相同的各阶行列式因子
在这里插入图片描述

(4)可逆与相抵的判定:
在这里插入图片描述
二.不可约多项式与唯一分解定理(7.4)
在这里插入图片描述
1.不可约多项式
(1)定义:
在这里插入图片描述
(2)性质:

定理9:设 p ( x ) p(x) p(x) K [ x ] K[x] K[x]中1个次数大于0的多项式,则下列命题等价:
p ( x ) p(x) p(x)是不可约多项式(因式的角度)
②对 ∀ f ( x ) ∈ K [ x ] ∀f(x)∈K[x] f(x)K[x],有 p ( x )   ∣   f ( x ) p(x)\,|\,f(x) p(x)f(x) ( p ( x ) , f ( x ) ) = 1 (p(x),f(x))=1 (p(x),f(x))=1(与任一多项式的关系的角度)
③在 K [ x ] K[x] K[x]中,从 p ( x )   ∣   f ( x ) g ( x ) p(x)\,|\,f(x)g(x) p(x)f(x)g(x)可推出(整除关系的角度) p ( x )   ∣   f ( x ) 或 p ( x )   ∣   g ( x ) p(x)\,|\,f(x)或p(x)\,|\,g(x) p(x)f(x)p(x)g(x)
④在 K [ x ] K[x] K[x]中, p ( x ) p(x) p(x)不能分解成2个次数较低的多项式的乘积(因式分解的角度)
注:括号中说明的是该命题从哪个角度对不可约多项式进行刻画
在这里插入图片描述
在这里插入图片描述
推论1:在 K [ x ] K[x] K[x]中,如果 p ( x ) p(x) p(x)不可约,且 p ( x )   ∣   f 1 ( x ) f 2 ( x ) . . . f s ( x ) p(x)\,|\,f_1(x)f_2(x)...f_s(x) p(x)f1(x)f2(x)...fs(x)那么 ∃ j ∈ { 1 , 2... s } ∃j∈\{1,2...s\} j{1,2...s},使得 p ( x )   ∣   f j ( x ) p(x)\,|\,f_j(x) p(x)fj(x)
推论2:在 K [ x ] K[x] K[x]中,一次多项式是不可约的
推论3:在 K [ x ] K[x] K[x]中, f ( x ) f(x) f(x)可约当且仅当 f ( x ) f(x) f(x)可以分解成2个次数较低的多项式的乘积

2.唯一因式分解定理
(1)唯一因式分解定理:

定理10: K [ x ] K[x] K[x]中任一次数大于0的多项式 f ( x ) f(x) f(x)能够唯一地分解成数域 K K K上有限多个不可约多项式的乘积;所谓唯一是指,如果 f ( x ) f(x) f(x)有2个这样的分解式 f ( x ) = p 1 ( x ) p 2 ( x ) . . . p s ( x ) = q 1 ( x ) q 2 ( x ) . . . q t ( x ) ( 1 ) f(x)=p_1(x)p_2(x)...p_s(x)=q_1(x)q_2(x)...q_t(x)\qquad(1) f(x)=p1(x)p2(x)...ps(x)=q1(x)q2(x)...qt(x)(1)那么一定有 s = t s=t s=t,且适当排列因式的次序后有 p i ( x ) ∼ q i ( x )   ( i = 1 , 2... s ) p_i(x)\sim q_i(x)\,(i=1,2...s) pi(x)qi(x)(i=1,2...s)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)标准分解式:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3.推广到整数环 Z Z Z
(1)素数与合数:
在这里插入图片描述
(2)性质:

定理11:设 1 < p ∈ Z 1<p∈Z 1<pZ,则下列命题等价
p p p是素数
②对 ∀ a ∈ Z ∀a∈Z aZ,都有 p   ∣   a p\,|\,a pa ( p , a ) = 1 (p,a)=1 (p,a)=1
③在 Z Z Z中,从 p   ∣   a b p\,|\,ab pab可推出 p   ∣   a p\,|\,a pa p   ∣   b p\,|\,b pb
p p p不能分解成2个较小的正整数的乘积
在这里插入图片描述

(3)算数基本定理:

定理12:任一大于1的整数 a a a都能唯一地分解成有限多个素数的乘积;所谓唯一是指,如果 a a a有2个这样的分解式 a = p 1 p 2 . . . p s = q 1 q 2 . . . q t a=p_1p_2...p_s=q_1q_2...q_t a=p1p2...ps=q1q2...qt那么 s = t s=t s=t,且适当排列因数的次序后,有 p i = q i   ( i = 1 , 2... s ) p_i=q_i\,(i=1,2...s) pi=qi(i=1,2...s)
该定理揭示了整数环 Z Z Z的结构

(4)标准分解式:
在这里插入图片描述
三.重因式(7.5)
在这里插入图片描述
1.定义:
在这里插入图片描述
2.一元多项式的导数:
在这里插入图片描述
3.重因式的存在性与判定:

定理13:设 K K K是数域,在 K [ x ] K[x] K[x]中,如果不可约多项式 p ( x ) p(x) p(x) f ( x ) f(x) f(x)的1个 k ( k ≥ 1 ) k(k≥1) k(k1)重因式,那么 p ( x ) p(x) p(x) f ′ ( x ) f'(x) f(x)的1个 k − 1 k-1 k1重因式;特别地, f ( x ) f(x) f(x)的单因式不是 f ′ ( x ) f'(x) f(x)的因式
在这里插入图片描述
推论1:设 K K K是数域,在 K [ x ] K[x] K[x]中,不可约多项式 p ( x ) p(x) p(x) f ( x ) f(x) f(x)的1个重因式当且仅当 p ( x ) p(x) p(x) f ( x ) f(x) f(x) f ′ ( x ) f'(x) f(x)的1个公因式
在这里插入图片描述
在这里插入图片描述
推论2:设 K K K是数域,在 K [ x ] K[x] K[x]中,次数大于0的多项式 f ( x ) f(x) f(x)有重因式当且仅当 f ( x ) f(x) f(x) f ′ ( x ) f'(x) f(x)有次数大于0的公因式
在这里插入图片描述
推论3:设 K K K是数域,在 K [ x ] K[x] K[x]中,次数大于0的多项式 f ( x ) f(x) f(x)没有重因式当且仅当 f ( x ) f(x) f(x) f ′ ( x ) f'(x) f(x)互素
在这里插入图片描述
在这里插入图片描述
推论4:设数域 F F F包含数域 K K K,对于 K [ x ] K[x] K[x]中次数大于0的多项式 f ( x ) , f ( x ) f(x),f(x) f(x),f(x) K [ x ] K[x] K[x]中没有重因式当且仅当 f ( x ) f(x) f(x) F [ x ] F[x] F[x]中没有重因式,即 f ( x ) f(x) f(x)
有无重因式不随数域的扩大而改变
在这里插入图片描述

在这里插入图片描述

  • 7
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值