高等代数(一)-多项式08:复系数与实系数多项式的因式分解

本文介绍了复数域与实数域上多项式的因式分解,重点阐述了代数基本定理在复数域的应用,即每个次数大于1的复系数多项式在复数域上都有一个一次因式,并且可以唯一地分解成一次因式的乘积。对于实系数多项式,定理表明它们可以在实数域上分解成一次因式和二次不可约因式的乘积。
摘要由CSDN通过智能技术生成

§ 8 复系数与实系数多项式的因式分解
以上我们讨论了在一般数域上多项式的因式分解问题,
现在来看一下在复数域与实数域上多项式的因式分解.复数域与实数域既然都是数域,
因此前面所得的结论对它们也是成立的. 但是这两个数域又有它们的特殊性,
所以某些结论就可以进一步具体化.
对于复数域,我们有下面重要的定理:
代数基本定理 每个次数 ⩾ 1 \geqslant 1 1 的复系数多项式在复数域中有一根.
这个定理首先是由高斯(Gauss)于 1797
年首先证明的.由于当时代数学研究的主要对象为多项式理论,
这个定理是关于多项式理论的非常有用、非常基本的结论,
因而被命名成代数基本定理. 它有多个证明(例如高斯就给出过四个证明),
都很复杂, 并且或多或少地用到数学分析等其他领域的结论,
这里我们不介绍它的证明. 将来学过复变函数论后可以很简单地证明,
本书附录三中给出利用数学分析性质的较简挺的证明.
利用根与一次因式的关系 (本章 87 定理 7 的推论),
代数基本定理显然可以等价地叙述为
每个次数 ⩾ 1 \geqslant 1 1 的复系数多项式,在复数域上二定有一个一次因式.
由此可知,在复数域上所有次数大于 1 的多项式全是可约的.
换句话说,不可约多项式只有一次多项式.于是,
因式分解定理在复数域上可以叙述成
复系数多项式因式分解定理 每个次数 ⩾ 1 \geqslant 1 1
的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.
因此,夏系数多项式具有标准分解式
f ( x ) = a n ( x − α 1 ) t 1 ( x − α 2 ) t 2 ⋯ ( x − α 4 ) t 3 , f(x)=a_{n}\left(x-\alpha_{1}\right)^{t_{1}}\left(x-\alpha_{2}\right)^{t_{2} \cdots\left(x-\alpha_{4}\right)^{t_{3}},} f(x)=an(xα1)t1(xα2)t2(xα4)t3,
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“648px”}
系数多项式恰有 n n n 个复根 (重根按重数计算).
下面来讨论实系数多项式的分解.
对于实系数多项式, 以下的事实是基本的: 如果 α \alpha α 是实系数多项式
f ( x ) f(x) f(x) 的复根,那么 α \alpha α 的共轮数 α ˉ \bar{\alpha} αˉ 也是 f ( x ) f(x) f(x) 的根.
因为设
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 0 , f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}, f(x)=anxn+an1xn1++

  • 27
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值