§ 8 复系数与实系数多项式的因式分解
以上我们讨论了在一般数域上多项式的因式分解问题,
现在来看一下在复数域与实数域上多项式的因式分解.复数域与实数域既然都是数域,
因此前面所得的结论对它们也是成立的. 但是这两个数域又有它们的特殊性,
所以某些结论就可以进一步具体化.
对于复数域,我们有下面重要的定理:
代数基本定理 每个次数 ⩾ 1 \geqslant 1 ⩾1 的复系数多项式在复数域中有一根.
这个定理首先是由高斯(Gauss)于 1797
年首先证明的.由于当时代数学研究的主要对象为多项式理论,
这个定理是关于多项式理论的非常有用、非常基本的结论,
因而被命名成代数基本定理. 它有多个证明(例如高斯就给出过四个证明),
都很复杂, 并且或多或少地用到数学分析等其他领域的结论,
这里我们不介绍它的证明. 将来学过复变函数论后可以很简单地证明,
本书附录三中给出利用数学分析性质的较简挺的证明.
利用根与一次因式的关系 (本章 87 定理 7 的推论),
代数基本定理显然可以等价地叙述为
每个次数 ⩾ 1 \geqslant 1 ⩾1 的复系数多项式,在复数域上二定有一个一次因式.
由此可知,在复数域上所有次数大于 1 的多项式全是可约的.
换句话说,不可约多项式只有一次多项式.于是,
因式分解定理在复数域上可以叙述成
复系数多项式因式分解定理 每个次数 ⩾ 1 \geqslant 1 ⩾1
的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.
因此,夏系数多项式具有标准分解式
f ( x ) = a n ( x − α 1 ) t 1 ( x − α 2 ) t 2 ⋯ ( x − α 4 ) t 3 , f(x)=a_{n}\left(x-\alpha_{1}\right)^{t_{1}}\left(x-\alpha_{2}\right)^{t_{2} \cdots\left(x-\alpha_{4}\right)^{t_{3}},} f(x)=an(x−α1)t1(x−α2)t2⋯(x−α4)t3,
{width=“648px”}
系数多项式恰有 n n n 个复根 (重根按重数计算).
下面来讨论实系数多项式的分解.
对于实系数多项式, 以下的事实是基本的: 如果 α \alpha α 是实系数多项式
f ( x ) f(x) f(x) 的复根,那么 α \alpha α 的共轮数 α ˉ \bar{\alpha} αˉ 也是 f ( x ) f(x) f(x) 的根.
因为设
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 0 , f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}, f(x)=anxn+an−1xn−1+⋯+