高等代数(十)-双线性函数与辛空间03:双线性函数

本文详细介绍了双线性函数的概念,包括定义、性质和实例,并探讨了双线性函数在矩阵表示下的度量矩阵。通过讨论非退化双线性函数,引入了正交空间、准欧氏空间和辛空间的概念,揭示了它们在线性代数中的重要地位。
摘要由CSDN通过智能技术生成

§ 3 双线性函数
定义 3 V 3 V 3V 是数域 P P P 上二个线性空间,
f ( α , β ) f(\boldsymbol{\alpha}, \boldsymbol{\beta}) f(α,β) V V V 上二个二元函数, 即对
V V V 中任意两个向量 α , β \boldsymbol{\alpha}, \boldsymbol{\beta} α,β, 根据 f f f
都唯一地对应于 P P P 中一个数
f ( α , β ) f(\boldsymbol{\alpha}, \boldsymbol{\beta}) f(α,β). 如果
f ( α , β ) f(\boldsymbol{\alpha}, \boldsymbol{\beta}) f(α,β) 有下列性质:
1)
f ( α , k 1 β 1 + k 2 β 2 ) = k 1 f ( α , β 1 ) + k 2 f ( α , β 2 ) f\left(\boldsymbol{\alpha}, k_{1} \boldsymbol{\beta}_{1}+k_{2} \boldsymbol{\beta}_{2}\right)=k_{1} f\left(\boldsymbol{\alpha}, \boldsymbol{\beta}_{1}\right)+k_{2} f\left(\boldsymbol{\alpha}, \boldsymbol{\beta}_{2}\right) f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);
2)
f ( k 1 α 1 + k 2 α 2 , β ) = k 1 f ( α 1 , β ) + k 2 f ( α 2 , β ) f\left(k_{1} \boldsymbol{\alpha}_{1}+k_{2} \boldsymbol{\alpha}_{2}, \boldsymbol{\beta}\right)=k_{1} f\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\beta}\right)+k_{2} f\left(\boldsymbol{\alpha}_{2}, \boldsymbol{\beta}\right) f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β),
其中
α , α 1 , α 2 , β , β 1 , β 2 \boldsymbol{\alpha}, \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\beta}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} α,α1,α2,β,β1,β2
V V V 中任意向量, k 1 , k 2 k_{1}, k_{2} k1,k2 P P P 中任意数, 则称
f ( α , β ) f(\boldsymbol{\alpha}, \boldsymbol{\beta}) f(α,β) V V V 上的二个双线性函数.
这个定义实际上是说对于 V V V 上双线性函数
f ( α , β ) f(\boldsymbol{\alpha}, \boldsymbol{\beta}) f(α,β), 将其中一个变元固定时是另
一个变元的线性函数.
例 1 欧氏空间 V V V 的内积是 V V V 上双线性函数.
例 2 设 f 1 ( α ) , f 2 ( α ) f_{1}(\boldsymbol{\alpha}), f_{2}(\boldsymbol{\alpha}) f1(α),f2(α)
都是线性空间 V V V 上的线性函数, 则
f ( α , β ) = f 1 ( α ) f 2 ( β ) , α , β ∈ V f(\boldsymbol{\alpha}, \boldsymbol{\beta})=f_{1}(\boldsymbol{\alpha}) f_{2}(\boldsymbol{\beta}), \quad \boldsymbol{\alpha}, \boldsymbol{\beta} \in V f(α,β)=f1(α)f2(β),α,βV
V V V 上的一个双线性函数.
例 3 设 P n P^{n} Pn 是数域 P P P n n n 维列向量构成的线性空间,
X , Y ∈ P n X, Y \in P^{n} X,YPn, 再设 A A A P P P 上一个 n n n 阶方阵. 令
f ( X , Y ) = X ⊤ A Y , f(\boldsymbol{X}, \boldsymbol{Y})=\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{Y}, f(X,Y)=XAY,
f ( X , Y ) f(X, Y) f(X,Y) P n P^{n} Pn 上的一个双线性函数.
如果设
X ⊤ = ( x 1 , x 2 , ⋯   , x n ) , Y ⊤ = ( y 1 , y 2 , ⋯   , y n ) \boldsymbol{X}^{\top}=\left(x_{1}, x_{2}, \cdots, x_{n}\right), \boldsymbol{Y}^{\top}=\left(y_{1}, y_{2}, \cdots, y_{n}\right) X=(x1,x2,,xn),Y=(y1,y2,,yn),
并设
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ) , \boldsymbol{A}=\left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right), A= a11a21an1a12a22an2a1na2nann ,

f ( X , Y ) = ∑ i = 1 n ∑ j = 1 n a i j x i y j f(\boldsymbol{X}, \boldsymbol{Y})=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} y_{j} f(X,Y)=i=1nj=1naijxiyj
(1) 或 (2) 实际上是数域 P P P 上任意 n n n 维线性空间 V V V 上的双线性函数
f ( α , β ) f(\alpha, \beta) f(α,β) 的一般形式,可以如下地说明这一事实. 取 V V V 的一组基
ε 1 , ε 2 , ⋯   , ε n \varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n} ε1,ε2,,εn, 设
α = ( ε 1 , ε 2 , ⋯   , ε n ) ( x 1 x 2 ⋮ x n ) = ( ε 1 , ε 2 , ⋯   , ε n ) X , β = ( ε 1 , ε 2 , ⋯   , ε n ) ( y 1 y 2 ⋮ y n ) = ( ε 1 , ε 2 , ⋯   , ε n ) Y , \begin{array}{c} \boldsymbol{\alpha}=\left(\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}, \cdots, \boldsymbol{\varepsilon}_{n}\right)\left(\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right)=\left(\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}, \cdots, \boldsymbol{\varepsilon}_{n}\right) \boldsymbol{X}, \\ \boldsymbol{\beta}=\left(\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}, \cdots, \boldsymbol{\varepsilon}_{n}\right)\left(\begin{array}{c} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{array}\right)=\left(\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}, \cdots, \boldsymbol{\varepsilon}_{n}\right) \boldsymbol{Y}, \end{array} α=(ε1,ε2,,εn) x1x2xn =(ε1,ε2,,εn)X,β=(ε1,ε2,,εn) y1y2yn =(ε1,ε2,,εn)Y,


f ( α , β ) = f ( ∑ i = 1 n x i ε i , ∑ j = 1 n y j ε j ) = ∑ i = 1 n ∑ j = 1 n f ( ε i , ε j ) x i y j . f(\boldsymbol{\alpha}, \boldsymbol{\beta})=f\left(\sum_{i=1}^{n} x_{i} \boldsymbol{\varepsilon}_{i}, \sum_{j=1}^{n} y_{j} \boldsymbol{\varepsilon}_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} f\left(\boldsymbol{\varepsilon}_{i}, \boldsymbol{\varepsilon}_{j}\right) x_{i} y_{j} . f(α,β)=f(i=1nxiεi,j=1nyjεj)=i=1nj=1nf(εi,εj)xiyj.

a i j = f ( ε i , ε j ) , i , j = 1 , 2 , ⋯   , n , A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ) , \begin{array}{c} a_{i j}=f\left(\boldsymbol{\varepsilon}_{i}, \boldsymbol{\varepsilon}_{j}\right), \quad i, j=1,2, \cdots, n, \\ \boldsymbol{A}=\left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right), \end{array} aij=f(εi,εj),i,j=1,2,,n,A= a11a21an1a12

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值