高等代数 具有度量的线性空间(第10章)5 正交空间与辛空间

在这里插入图片描述
一.洛伦兹变换与闵可夫斯基空间(10.6)
1.伽利略变换(Galileo Transformation):
在这里插入图片描述
2.洛伦兹变换(Lorentz Transformation):
在这里插入图片描述
3.闵可夫斯基空间(Minkowski Space):
在这里插入图片描述
二.正交空间(10.6)
1.正交空间
(1)正交空间的概念:
在这里插入图片描述
(2)正交:
在这里插入图片描述
(3)非/全迷向的正交空间:
在这里插入图片描述

命题1:如果正交空间 ( V , f ) (V,f) (V,f)是非迷向的,那么它一定是正则的,即 f f f一定是非退化的
在这里插入图片描述

命题2:设 c h a r F ≠ 2 char F≠2 charF=2,若正交空间 ( V , f ) (V,f) (V,f)是全迷向的,则 f = 0 f=0 f=0
在这里插入图片描述

(4)正交空间的子空间:
在这里插入图片描述
在这里插入图片描述
(5)正交补:
在这里插入图片描述

定理1:设 ( V , f ) (V,f) (V,f)是域 F F F上有限维正则的正交空间, W W W V V V的1个子空间,则
( 1 ) dim ⁡ W + dim ⁡ W ⊥ = dim ⁡ V ( 11 ) ( 2 ) ( W ⊥ ) ⊥ = W    ( 12 ) (1)\dim{W}+\dim{W^⊥}=\dim{V}\qquad(11)\\(2)(W^⊥)^⊥=W\qquad\qquad\qquad\qquad\:\,(12) (1)dimW+dimW=dimV(11)(2)(W)=W(12)
在这里插入图片描述

2.正交基
(1)正交基:
在这里插入图片描述

定理2:特征不为2的域 F F F上的 n n n维正交空间 ( V , f ) (V,f) (V,f)一定存在正交基
在这里插入图片描述

(2)标准正交基:
在这里插入图片描述

(3)利用正交基表示向量:

命题3:设 ( V , f ) (V,f) (V,f)是域 F F F上的 n n n维正则的正交空间, α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn是它的1个正交基,则对 V V V中任一向量 β β β,有 β = ∑ i = 1 n f ( β , α i ) f ( α i , α i ) α i ( 15 ) β=\displaystyle\sum_{i=1}^n\frac{f(β,α_i)}{f(α_i,α_i)}α_i\qquad(15) β=i=1nf(αi,αi)f(β,αi)αi(15)
在这里插入图片描述

(4)直和与正交:

定理3:设 ( V , f ) (V,f) (V,f)是域 F F F上的正交空间, W W W V V V的有限维非平凡子空间,则 V = W ⊕ W ⊥ ( 16 ) V=W\oplus W^⊥\qquad(16) V=WW(16)的充要条件是 W W W为正则子空间
在这里插入图片描述

在这里插入图片描述
3.同构映射
(1)概念:
在这里插入图片描述
(2)保距同构的判定:

定理4:设 ( V 1 , f 1 ) , ( V 2 , f 2 ) (V_1,f_1),(V_2,f_2) (V1,f1),(V2,f2)是特征不等于2的域 F F F上的2个 n n n维正交空间,则 V 1 V_1 V1 V 2 V_2 V2的线性同构 σ σ σ是保距同构当且仅当 F F F上的 n n n元二次型 x ′ A x , y ′ B y x'Ax,y'By xAx,yBy等价,其中 A A A f 1 f_1 f1 V 1 V_1 V1的1个基 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn下的度量矩阵, B B B f 2 f_2 f2 V 2 V_2 V2的1个基 β 1 , β 2 . . . β n β_1,β_2...β_n β1,β2...βn下的度量矩阵, x = P − 1 y , P x=P^{-1}y,P x=P1y,P σ σ σ关于 α 1 , α 2 . . . α n , β 1 , β 2 . . . β n α_1,α_2...α_n,β_1,β_2...β_n α1,α2...αn,β1,β2...βn的矩阵
在这里插入图片描述
推论1:设 ( V 1 , f 1 ) , ( V 2 , f 2 ) (V_1,f_1),(V_2,f_2) (V1,f1),(V2,f2)是特征不等于2的域 F F F上的2个 n n n维正交空间,则 V 1 V_1 V1 V 2 V_2 V2的线性同构 σ σ σ是保距同构当且仅当 f 1 f_1 f1 V 1 V_1 V1的1个基下的度量矩阵 A A A f 2 f_2 f2 V 2 V_2 V2的1个基下的度量矩阵 B B B合同,即 A = P ′ B P A=P'BP A=PBP,其中 P P P σ σ σ关于 V 1 V_1 V1的上述1个基与 V 2 V_2 V2的上述1个基下的矩阵

(3)正交空间保距同构的判定:

定理5:实数域上2个 n n n维正交空间 ( V 1 , f 1 ) , ( V 2 , f 2 ) (V_1,f_1),(V_2,f_2) (V1,f1),(V2,f2)同构(即保距同构)的充要条件是 f 1 f_1 f1 V 1 V_1 V1的1个基下的度量矩阵 A A A f 2 f_2 f2 V 2 V_2 V2的1个基下的度量矩阵 B B B有相同的秩和正惯性指数
在这里插入图片描述
在这里插入图片描述

定理6:复数域上2个 n n n维正交空间 ( V 1 , f 1 ) , ( V 2 , f 2 ) (V_1,f_1),(V_2,f_2) (V1,f1),(V2,f2)同构(即保距同构)的充要条件是 f 1 f_1 f1 V 1 V_1 V1的1个基下的度量矩阵 A A A f 2 f_2 f2 V 2 V_2 V2的1个基下的度量矩阵 B B B有相同的秩
在这里插入图片描述

三.正交空间上的正交变换(10.6)
1.概念:
在这里插入图片描述
2.判定:

定理7:设 ( V , f ) (V,f) (V,f)是域 F F F n n n维正则的正交空间,则 T \textit{T} T V V V上的正交变换当且仅当其是 V V V到自身的同构映射
在这里插入图片描述

定理8:设 ( V , f ) (V,f) (V,f)是特征不为2的域 F F F n n n维正则的正交空间, q q q f f f对应的二次函数,则 V V V上的线性变换 T \textit{T} T是正交变换当且仅当下式成立: q ( α ) = q ( T α ) ( 22 ) q(α)=q(\textit{T}α)\qquad(22) q(α)=q(Tα)(22)
在这里插入图片描述

定理9:设 ( V , f ) (V,f) (V,f)是特征不为2的域 F F F n n n维正则的正交空间, f f f V V V的1个基 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn下的度量矩阵为 A , V A,V A,V上的1个线性变换 T \textit{T} T在基 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn下的矩阵是 T T T,则 T \textit{T} T V V V上的正交变换当且仅当 T ′ A T = A T'AT=A TAT=A
在这里插入图片描述
推论1:条件同定理9, T \textit{T} T V V V的任意1个基下的矩阵 T T T的行列式等于 ± 1 ±1 ±1
在这里插入图片描述

3.闵可夫斯基空间与广义洛伦兹变换:
在这里插入图片描述
四.辛空间(10.6)
1.辛空间:
在这里插入图片描述
2.辛基
(1)概念与存在性:

定理10:域 F F F n n n维辛空间 ( V , f ) (V,f) (V,f)中存在1个基 δ 1 , δ − 1 . . . δ r , δ − r , η 1 . . . η s δ_1,δ_{-1}...δ_r,δ_{-r},η_1...η_s δ1,δ1...δr,δr,η1...ηs,使得 f ( δ i , δ − i ) = − f ( δ − i , δ i ) = 1   ( i = 1 , 2... r ) f ( δ i , δ j ) = 0   ( i + j ≠ 0 ) f ( δ i , η k ) = 0   ( i = ± 1... ± r , k = 1 , 2... s ) f ( η j , η k ) = 0   ( j , k = 1 , 2... s ) f(δ_i,δ_{-i})=-f(δ_{-i},δ_i)=1\,(i=1,2...r)\\f(δ_i,δ_j)=0\,(i+j≠0)\\f(δ_i,η_k)=0\,(i=\pm1...\pm r,k=1,2...s)\\f(η_j,η_k)=0\,(j,k=1,2...s) f(δi,δi)=f(δi,δi)=1(i=1,2...r)f(δi,δj)=0(i+j=0)f(δi,ηk)=0(i=±1...±r,k=1,2...s)f(ηj,ηk)=0(j,k=1,2...s)这个基称为 ( V , f ) (V,f) (V,f)辛基
在这里插入图片描述
把定理10中的辛基重排一下次序,得到: δ 1 . . . δ r , δ − 1 . . . δ − r , η 1 . . . η s ( 26 ) δ_1...δ_r,δ_{-1}...δ_{-r},η_1...η_s\qquad(26) δ1...δr,δ1...δr,η1...ηs(26)这个基也称为辛基,容易看出, f f f在该基下的度量矩阵为 [ 0 I r 0 − I r 0 0 0 0 0 ] ( 27 ) \left[\begin{matrix}0&I_r&0\\-I_r&0&0\\0&0&0\end{matrix}\right]\qquad(27) 0Ir0Ir00000(27)推论1:域 F F F上有限维正则的辛空间一定是偶数维的

(2)用辛基表示向量:

命题4:设 ( V , f ) (V,f) (V,f) n = 2 r n=2r n=2r维正则的辛空间,其1个辛基是 δ 1 , δ − 1 . . . δ r , δ − r δ_1,δ_{-1}...δ_r,δ_{-r} δ1,δ1...δr,δr,则对 ∀ α ∈ V \forallα∈V αV,有 α = ∑ i = 1 r [ f ( α , δ − i ) δ i − f ( α , δ i ) δ − i ] ( 28 ) α=\displaystyle\sum_{i=1}^r[f(α,δ_{-i})δ_i-f(α,δ_i)δ_{-i}]\qquad(28) α=i=1r[f(α,δi)δif(α,δi)δi](28)
在这里插入图片描述

3.辛空间及其子空间
(1)辛空间的子空间的性质:

定理11:设 ( V , f ) (V,f) (V,f)是域 F F F上有限维正则的辛空间, W W W V V V的有限维非平凡子空间,则 ( 1 )   dim ⁡ W + dim ⁡ W ⊥ = dim ⁡ V ( 2 )   ( W ⊥ ) ⊥ = W (1)\:\dim{W}+\dim{W^⊥}=\dim{V}\\(2)\:(W^⊥)^⊥=W (1)dimW+dimW=dimV(2)(W)=W
在这里插入图片描述

(2)辛空间的分解:

定理12:设 ( V , f ) (V,f) (V,f)是域 F F F上的辛空间, W W W V V V的有限维非平凡子空间,则 V = W ⊕ W ⊥ ( 29 ) V=W\oplus W^⊥\qquad(29) V=WW(29)的充要条件是 W W W为正则的子空间
在这里插入图片描述

定理13:域 F F F上有限维辛空间 ( V , f ) (V,f) (V,f)一定能分解成一些2维正则子空间与1维非正则子空间的正交直和
在这里插入图片描述

4.辛空间的同构:
在这里插入图片描述

定理14:域 F F F上2个有限维辛空间 ( V 1 , f 1 ) , ( V 2 , f 2 ) (V_1,f_1),(V_2,f_2) (V1,f1),(V2,f2)同构的充要条件是 V 1 , V 2 V_1,V_2 V1,V2有相同的维数且 f 1 , f 2 f_1,f_2 f1,f2有相同的矩阵秩
在这里插入图片描述
推论1:域 F F F上2个有限维正则的辛空间同构的充要条件是它们有相同的维数

五.辛变换(10.6)
1.辛变换
(1)概念:
在这里插入图片描述
(2)判定:

定理15:设 ( V , f ) (V,f) (V,f)是域 F F F上有限维正则的辛空间,则 B ℬ B V V V上的辛变换当且仅当 B ℬ B V V V到自身的1个同构映射
在这里插入图片描述

定理16:设 ( V , f ) (V,f) (V,f) n n n维正则辛空间,则 V V V上的线性变换 B ℬ B是辛变换当且仅当 B ′ A B = A B'AB=A BAB=A其中 B B B B ℬ B V V V的辛基 δ 1 . . . δ r , δ − 1 . . . δ − r δ_1...δ_r,δ_{-1}...δ_{-r} δ1...δr,δ1...δr下的矩阵, A A A形如 ( 31 ) (31) (31)
在这里插入图片描述

2.辛矩阵
(1)概念:
在这里插入图片描述
(2)性质:

(定理16的)推论1:域 F F F上的 n = 2 r n=2r n=2r级矩阵 B B B如果是辛矩阵,那么 ∣ B ∣ = ± 1 |B|=\pm1 B=±1
在这里插入图片描述

定理17:辛矩阵的行列式等于1
在这里插入图片描述

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值