Jetson orin部署大模型示例教程

一、LLM介绍

LLM指的是Large Language Model(大型语言模型),是一类基于深度学习的自然语言处理技术,其主要目的是让机器能够更好地理解和生成人类的自然语言文本,如文章、对话、搜索等。

教程 - text-generation-webui

通过在 NVIDIA Jetson 上使用 oobabooga 的 text-generaton-webui 运行 LLM 与本地 AI 助手进行交互!

所需条件:

  1. 以下 Jetson 之一:

    Jetson AGX Orin 64GB Jetson AGX Orin (32GB) Jetson Orin Nano Orin (8GB)⚠️1

  2. 运行以下 JetPack.5x 之一

    JetPack 5.1.2 (L4T, r35.4.1) JetPack 5.1.1 (L4T r35.3.1) JetPack 5.1 (L4T r35.2.1

  3. 足够的存储空间(最好使用 NVMe SSD)。

    • 6.2GB对于容器映像
    • 模型空间

使用 和 script 自动拉取或构建兼容的容器映像:run.shautotag

cd jetson-containers
./run.sh $(./autotag text-generation-webui)

容器有一个默认的运行命令 (),它将自动启动 Web 服务器,如下所示:CMD

cd /opt/text-generation-webui && python3 server.py \
  --model-dir=/data/models/text-generation-webui \
  --chat \
  --listen

打开浏览器并访问 .http://<IP_ADDRESS>:7860

在 Web UI 上下载模型

有关下载模型的说明,请参阅 oobabooga 文档 - 从 Web UI 中或使用 download-model.py

./run.sh --workdir=/opt/text-generation-webui $(./autotag text-generation-webui) /bin/bash -c \
  'python3 download-model.py --output=/data/models/text-generation-webui TheBloke/Llama-2-7b-Chat-GPTQ'

GGUF 型号

目前使用最快的 oobabooga 模型加载器是具有 4 位量化 GGUF 模型的 llama.cpp

您可以下载特定量化的单个模型文件,例如 .输入文件名并点击下载按钮。*.Q4_K_M.bin

量化内存 (MB)
TheBloke/Llama-2-7b-Chat-GGUFllama-2-7b-chat.Q4_K_M.gguf5,268
TheBloke/Llama-2-13B-chat-GGUFllama-2-13b-chat.Q4_K_M.gguf8,609
TheBloke/LLaMA-30b-GGUFllama-30b.Q4_K_S.gguf19,045
TheBloke/Llama-2-70B-chat-GGUFllama-2-70b-chat.Q4_K_M.gguf37,655

 这里模型对内存的消耗较大,如果是orin nano选第一个7B大小模型,根据手里的硬件设备进行挑选下载,模型越大对内存要求越高。

测试结果如下

二、文本 + 视觉 (VLM)

教程 - MiniGPT-4

通过在 Jetson 上运行 MiniGPT-4,让您本地运行的 LLM 获得视觉访问权限!

设置容器MiniGPT-4

有关更多信息,请参阅 jetson-containers 的 minigpt4 软件包 README**

克隆和设置jetson-containers

git clone https://github.com/dusty-nv/jetson-containers
cd jetson-containers
sudo apt update; sudo apt install -y python3-pip
pip3 install -r requirements.txt

使用模型启动容器minigpt4

要使用推荐的型号启动 MiniGPT4 容器和 Web 服务器,请运行以下命令:

cd jetson-containers
./run.sh $(./autotag minigpt4) /bin/bash -c 'cd /opt/minigpt4.cpp/minigpt4 && python3 webui.py \
  $(huggingface-downloader --type=dataset maknee/minigpt4-13b-ggml/minigpt4-13B-f16.bin) \
  $(huggingface-downloader --type=dataset maknee/ggml-vicuna-v0-quantized/ggml-vicuna-13B-v0-q5_k.bin)'

然后,打开您的网络浏览器并访问 .http://<IP_ADDRESS>:7860

结果

遇到问题:

/usr/local/lib/python3.8/dist-packages/gradio/layouts/column.py:55: UserWarning: 'scale' value should be an integer. Using 0.5 will cause issues.
  warnings.warn(
Traceback (most recent call last):
  File "webui.py", line 129, in <module>
    start(share_link)
  File "webui.py", line 87, in start
    submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
AttributeError: 'Button' object has no attribute 'style'

本地运行镜像 docker run --runtime nvidia -it --rm --network host e9a43bf72f83

python3 webui.py   $(huggingface-downloader --type=dataset maknee/minigpt4-13b-ggml/minigpt4-13B-f16.bin)   $(huggingface-downloader --type=dataset makne e/ggml-vicuna-v0-quantized/ggml-vicuna-13B-v0-q5_k.bin)

即可,原因是gradio版本为3.50.2以后成功运行(默认自带4.0.2) 

三、图像生成 Stable-Diffusion

教程 - 稳定扩散

让我们在 NVIDIA Jetson 上运行 AUTOMATIC1111 的 stable-diffusion-webui 来根据我们的提示生成图像!

如何开始

如果您是第一次运行它,请完成预设置并查看 jetson-containers/stable-diffusion-webui 自述文件。

使用 和 script 自动拉取或构建兼容的容器映像:run.shautotag

cd jetson-containers
./run.sh $(./autotag stable-diffusion-webui)

容器有一个默认的运行命令 (),它将自动启动 Web 服务器,如下所示:CMD

cd /opt/stable-diffusion-webui && python3 launch.py \
  --data=/data/models/stable-diffusion \
  --enable-insecure-extension-access \
  --xformers \
  --listen \
  --port=7860

您应该看到它在第一次运行时下载模型检查点。

打开浏览器并访问http://<IP_ADDRESS>:7860

四、视觉Vision Transformers (ViT)

<think>好的,用户的问题是关于如何将YOLOv8与大模型结合实现火焰和烟雾检测的方案。首先,我需要理解YOLOv8的基本功能和它在目标检测中的优势。YOLOv8作为实时目标检测模型,速度快、精度高,适合处理视频流的实时检测。但用户提到要结合大模型,可能是指像Transformer、BERT或CLIP这类参数多、能力强的模型,以提升检测的准确性或处理复杂场景。 接下来,我需要考虑两者的结合方式。可能的方案包括级联检测、特征融合、后处理增强和知识蒸馏。级联检测中,YOLOv8作为初步检测,大模型进行二次验证,这样可以减少计算量,同时利用大模型的强分类能力。特征融合方面,可以将YOLOv8提取的特征与大模型的语义特征结合,提升模型对复杂场景的理解。后处理增强可能利用大模型(如GPT)对检测结果进行上下文分析,减少误报。知识蒸馏则是用大模型指导YOLOv8训练,提升小模型的性能。 然后,需要考虑实现步骤。数据准备方面,需要高质量的数据集,可能用大模型辅助数据增强或生成困难样本。模型训练时,可能采用联合训练或分阶段训练。部署方面,YOLOv8负责实时检测,大模型在服务器端处理复杂任务,需要注意延迟问题。系统集成部分,需要设计合理的架构,可能使用消息队列或微服务来协调两部分的工作。 还需要参考用户提供的引用内容,其中提到了YOLOv8在火焰烟雾检测中的应用,包括数据集准备、模型训练和UI设计。结合这些信息,可以建议用户保持YOLOv8的实时性,同时利用大模型处理复杂情况,比如CLIP的zero-shot能力或知识蒸馏提升小模型性能。 可能的问题包括技术选型、性能优化、误报处理和数据不足。例如,如何选择合适的大模型,平衡速度与精度,减少误报,以及处理数据稀缺的情况。这些都是用户在实际实施中可能遇到的挑战,需要在方案中提前考虑。 最后,要确保回答结构清晰,分点说明,并自然地引用提供的资料。同时生成相关问题,帮助用户深入理解相关技术难点和应用场景。</think>### 基于YOLOv8与大模型结合的火焰与烟雾检测实现方案 #### 1. **核心思路** 将YOLOv8的实时检测能力与大模型(如视觉-语言多模态模型或Transformer)的上下文理解能力结合,提升复杂场景下的检测精度和语义分析能力。 **典型方案:** - **级联检测框架** YOLOv8作为基础检测器快速定位候选区域,大模型(如CLIP、ViT)对候选区域进行细粒度分类或语义验证[^1]。 例如:YOLOv8检测火焰候选框 → CLIP模型根据图像-文本对齐能力判断是否为真实火焰。 - **特征融合** 将YOLOv8的局部特征与大模型的全局语义特征(如DETR的编码器输出)融合,增强对烟雾扩散等模糊目标的识别能力。 - **知识蒸馏优化** 使用大模型(如教师模型)指导YOLOv8(学生模型)训练,提升小模型在遮挡、低光照等困难样本上的表现[^2]。 #### 2. **关键技术实现步骤** **2.1 数据准备与增强** - 使用大模型辅助标注:通过SAM(Segment Anything Model)自动生成精细化掩码标注 - 生成对抗样本:基于扩散模型(如Stable Diffusion)合成火焰烟雾的复杂场景数据 **2.2 模型训练流程** ```python # 示例:级联检测框架伪代码 import torch from yolov8 import YOLOv8Detector from clip import CLIPModel # 初始化模型 detector = YOLOv8Detector(weights="yolov8n.pt") clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") # 推理流程 def detect_fire(image): boxes = detector(image) # YOLOv8初步检测 for box in boxes: crop_img = crop(image, box) text_prompt = "a photo of flame or smoke" # 可扩展为多提示词 similarity = clip_model(crop_img, text_prompt) if similarity > threshold: return True return False ``` **2.3 部署优化** - **边缘-云端协同**:YOLOv8部署在边缘设备(如Jetson Nano)实时检测,大模型运行在云端处理疑难样本 - **量化加速**:对大模型进行INT8量化(如使用TensorRT),平衡精度与速度 #### 3. **典型技术挑战与解决方案** | 挑战 | 解决方案 | |---------|---------| | 实时性要求 | 大模型仅处理YOLOv8的高置信度候选区域 | | 多尺度烟雾检测 | 结合YOLOv8的多尺度预测层与Vision Transformer的注意力机制 | | 误报抑制 | 使用GPT-4V生成场景描述辅助逻辑判断 | #### 4. **扩展应用场景** - 火灾预警系统中融合LLM(如GPT-4)生成多模态警报报告 - 结合扩散模型生成虚拟训练数据提升模型泛化性
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无证驾驶梁嗖嗖

让我们解决Jetson使用问题

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值