多重假设检验与Bonferroni校正、FDR校正

总结起来就三句话:
(1)当同一个数据集有n次(n>=2)假设检验时,要做多重假设检验校正
(2)对于Bonferroni校正,是将p-value的cutoff除以n做校正,这样差异基因筛选的p-value cutoff就更小了,从而使得结果更加严谨
(3)FDR校正是对每个p-value做校正,转换为q-value。q=p*n/rank,其中rank是指p-value从小到大排序后的次序。
举一个具体的实例:
我们测量了M个基因在A,B,C,D,E一共5个时间点的表达量,求其中的差异基因,具体做法:
(1)首先做ANOVA,确定这M个基因中有哪些基因至少出现过差异
(2)5个时间点之间两两比较,一共比较5*4/2=10次,则多重假设检验的n=10
(3)每个基因做完10次假设检验后都有10个p-value,做多重假设检验校正(n=10),得到q-value

(4)根据q-value判断在哪两组之间存在差异


通过T检验等统计学方法对每个蛋白进行P值的计算。T检验是差异蛋白表达检测中常用的统计学方法,通过合并样本间可变的数据,来评价某一个蛋白在两个样本中是否有差异表达。
但是由于通常样本量较少,从而对总体方差的估计不很准确,所以T检验的检验效能会降低,并且如果多次使用T检验会显著增加假阳性的次数。
例如,当某个蛋白的p值小于0.05(5%)时,我们通常认为这个蛋白在两个样本中的表达是有差异的。但是仍旧有5%的概率,这个蛋白并不是差异蛋白。那么我们就错误地否认了原假设(在两个样本中没有差异表达),导致了假阳性的产生(犯错的概率为5%)。
如果检验一次,犯错的概率是5%;检测10000次,犯错的次数就是500次,即额外多出了500次差异的结论(即使实际没有差异)。为了控制假阳性的次数,于是我们需要对p值进行多重检验校正,提高阈值。

方法一.Bonferroni
“最简单严厉的方法”
例如,如果检验1000次,我们就将阈值设定为5%/ 1000 = 0.00005;即使检验1000次,犯错误的概率还是保持在N×1000 = 5%。最终使得预期犯错误的次数不到1次,抹杀了一切假阳性的概率。
该方法虽然简单,但是检验过于严格,导致最后找不到显著表达的蛋白(假阴性)。
方法二.FalseDiscovery Rate
“比较温和的方法校正P值”
FDR(假阳性率)错误控制法是Benjamini于1995年提出的一种方法,基本原理是通过控制FDR值来决定P值的值域。相对Bonferroni来说,FDR用比较温和的方法对p值进行了校正。其试图在假阳性和假阴性间达到平衡,将假/真阳性比例控制到一定范围之内。例如,如果检验1000次,我们设定的阈值为0.05(5%),那么无论我们得到多少个差异蛋白,这些差异蛋白出现假阳性的概率保持在5%之内,这就叫FDR<5%。
那么我们怎么从p value 来估算FDR呢,人们设计了几种不同的估算模型。其中使用最多的是Benjamini and Hochberg方法,简称BH法。虽然这个估算公式并不够完美,但是也能解决大部分的问题,主要还是简单好用!
FDR的计算方法
除了可以使用excel的BH计算方法外,对于较大的数据,我们推荐使用R命令p.adjust。


1.我们将一系列p值、校正方法(BH)以及所有p值的个数(length(p))输入到p.adjust函数中。
2.将一系列的p值按照从大到小排序,然后利用下述公式计算每个p值所对应的FDR值。
公式:p * (n/i), p是这一次检验的pvalue,n是检验的次数,i是排序后的位置ID(如最大的P值的i值肯定为n,第二大则是n-1,依次至最小为1)。
3.将计算出来的FDR值赋予给排序后的p值,如果某一个p值所对应的FDR值大于前一位p值(排序的前一位)所对应的FDR值,则放弃公式计算出来的FDR值,选用与它前一位相同的值。因此会产生连续相同FDR值的现象;反之则保留计算的FDR值。
4. 将FDR值按照最初始的p值的顺序进行重新排序,返回结果。
最后我们就可以使用校正后的P值进行后续的分析了。

### 回答1: Bonferroni校正是一种常用的调整方法,用于解决多重比较中的假阳性误差问题。在进行多组数据的成对比较时,我们通常会进行多次假设检验。然而,如果我们不进行任何校正措施,那么每次进行假设检验时都有可能发生假阳性误差,即错误地拒绝真实的无效假设。 Bonferroni校正的原理是将显著性水平进行调整,以减少发生假阳性误差的概率。具体而言,Bonferroni校正将显著性水平除以进行比较的总次数。例如,如果我们要进行10次成对比较,通常的显著性水平为0.05,那么在Bonferroni校正下,每次的显著性水平为0.05/10=0.005。 通过这种校正方法,我们实际上增加了拒绝原假设的难度,因为我们需要更强的证据来拒绝无效假设。这样做的好处是,我们能够降低发生假阳性误差的概率,从而获得更可靠的结果。 然而,Bonferroni校正也有其限制。由于显著性水平被大幅降低,这可能导致无法拒绝一些实际上存在差异的假设。此外,Bonferroni校正假设所有比较是独立的,而且可能忽略了多个比较之间的相关性。如果多个比较之间存在相关性,Bonferroni校正可能过于保守,导致错失一些有实际意义的差异。 总的来说,Bonferroni校正在一些情况下是一种简单有效的多重比较调整方法,可以减少假阳性误差的发生。然而,在应用时需要谨慎,需要考虑不同场景下的适用性和可能的局限性。 ### 回答2: Bonferroni校正多重比较中一种常见的校正方法,用于控制因进行多次比较而产生的错误发现率。 在实验或研究中,我们通常需要进行多个相互之间的比较,例如比较多个组别的平均值是否有显著差异。然而,如果不对这些多重比较进行校正,可能会导致错误地认为某些差异是显著的,即使在整体上并没有意义。 Bonferroni校正是一种保守的校正方法。其基本原理是将显著性水平(通常为0.05)除以进行的所有比较的数量。然后将这个校正后的显著性水平每个比较的p值进行比较。如果某个比较的p值小于校正后的显著性水平,我们可以认为存在显著差异。 例如,如果我们进行了10个比较,显著性水平为0.05,那么校正后的显著性水平为0.05/10=0.005。对于每一个比较,我们将比较的p值0.005进行比较。如果某个比较的p值小于0.005,我们就可以认为在校正后的显著性水平下存在显著差异。 Bonferroni校正的优点是简单易懂且可解释性强。然而,由于其保守性质,可能导致过多的错误发现率。因此,在实际应用中,还需要根据具体情况选择合适的校正方法,以平衡错误发现率和统计效力之间的权衡。 ### 回答3: Bonferroni校正是一种常用的多重比较校正方法,用于解决进行多次成对比较时可能出现的统计显著性水平过高的问题。在进行多次比较时,如果不进行校正,可能会导致错误地拒绝原假设、得出虚假的显著差异结果。 Bonferroni校正的基本思想很简单,即将显著性水平α除以进行比较的次数,得到一个更严格的临界值。这样,只有当比较结果的p值小于或等于校正后的显著性水平,才能认为结果具有统计学意义。 例如,我们进行了10次成对比较,显著性水平为0.05。如果我们不进行Bonferroni校正,那么每次比较的显著性水平为0.05。然而,进行了多次比较后,整体的显著性水平会增加,导致可能错误地拒绝原假设。 应用Bonferroni校正后,我们将原来的显著性水平0.05除以进行比较的次数10,得到0.005作为校正后的显著性水平。这意味着只有当比较结果的p值小于或等于0.005时,我们才能得出具有统计学意义的结论。 Bonferroni校正的优点是简单易用,能够有效地控制多重比较的错误率。然而,它也存在一些缺点,例如过于保守,在进行大量比较时可能会漏掉真实的显著差异。因此,在实际应用中,我们需要结合研究目的、样本量等因素,综合考虑使用Bonferroni校正或其他多重比较校正方法。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值