随着人工智能技术的快速发展,大语言模型(如GPT、BERT等)在自然语言处理领域取得了显著进展,特别是在非结构化文本数据的分析方面,极大地拓展了我们的研究视角。这些技术不仅提高了处理和理解文本数据的效率,还为传统的历史灾害研究注入了全新的活力,使我们能够更加深入地探索历史事件的内在规律。
本内容将文本分析技术与历史灾害研究相结合,首先介绍大模型驱动的文本分析基础理论与实践方法,帮助学生掌握将非结构化数据转化为结构化信息的核心技能;其次,深入探讨历史灾害文献的量化分析方法,以海南岛千年台风序列重建为典型案例,展示如何从古代文献中提取气候变化信息;最后,引导学生思考长时间尺度气候变化与极端事件的关系,培养跨学科研究思维。内容既有理论框架也有实战案例,既关注古代气候变迁也探索现代技术应用,适合对气候史、文本挖掘或防灾减灾感兴趣的人群。
专题一方法: 历史灾害文献分析方法论
1、灾害叙事文本量化转化原理
2、历史文献挖掘与数字化技术
3、文本关键词提取与指标体系建立.
专题二 台风案例
1、台风灾害强度评估体系
- 历史台风等级分类体系构建
- 量化指标设计(建筑物破坏、植被损失、人员伤亡、风暴潮与洪涝等)
- 灾害综合强度指数计算方法
2、历史地理空间重建技术
- 古今地名对应关系建立
- 空间分布数据可视化方法
3、千年尺度台风活动演变分析
- 台风季节性分布变化特征研究
- 台风强度长期变化趋势分析
- 台风空间分布模式演变研究
4、复合灾害分析方法
- 多灾种耦合事件识别方法
- 复合灾害时空特征研究
- 气候背景变化与复合灾害关系分析
专题三 干旱案例
1、不同干旱强度统计
2、不同地点干旱强度统计
专题四 暴雨案例
1、不同时间暴雨次数统计
2、不同地点暴雨频数统计