基于AI大语言模型的历史文献分析在气候与灾害重建领域中的技术应用

随着人工智能技术的快速发展,大语言模型(如GPT、BERT等)在自然语言处理领域取得了显著进展,特别是在非结构化文本数据的分析方面,极大地拓展了我们的研究视角。这些技术不仅提高了处理和理解文本数据的效率,还为传统的历史灾害研究注入了全新的活力,使我们能够更加深入地探索历史事件的内在规律。

本内容将文本分析技术与历史灾害研究相结合,首先介绍大模型驱动的文本分析基础理论与实践方法,帮助学生掌握将非结构化数据转化为结构化信息的核心技能;其次,深入探讨历史灾害文献的量化分析方法,以海南岛千年台风序列重建为典型案例,展示如何从古代文献中提取气候变化信息;最后,引导学生思考长时间尺度气候变化与极端事件的关系,培养跨学科研究思维。内容既有理论框架也有实战案例,既关注古代气候变迁也探索现代技术应用,适合对气候史、文本挖掘或防灾减灾感兴趣的人群。

专题一方法: 历史灾害文献分析方法论

1、灾害叙事文本量化转化原理

2、历史文献挖掘与数字化技术

3、文本关键词提取与指标体系建立.

专题二 台风案例

1台风灾害强度评估体系

  1. 历史台风等级分类体系构建
  2. 量化指标设计(建筑物破坏、植被损失、人员伤亡、风暴潮与洪涝等)
  3. 灾害综合强度指数计算方法

 

2历史地理空间重建技术

  1. 古今地名对应关系建立
  2. 空间分布数据可视化方法

 

3千年尺度台风活动演变分析

  1. 台风季节性分布变化特征研究
  2. 台风强度长期变化趋势分析
  3. 台风空间分布模式演变研究

 

4复合灾害分析方法

  1. 多灾种耦合事件识别方法
  2. 复合灾害时空特征研究
  3. 气候背景变化与复合灾害关系分析

 

 专题三  干旱案例

 1不同干旱强度统计

2不同地点干旱强度统计

 专题四  暴雨案例

1不同时间暴雨次数统计

2不同地点暴雨频数统计

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值