python使用AprilTag 3

python使用AprilTag 3

最近想测试一下AprilTag精度,看看能不能用的上。

1 安装

法1:github源码编译安装(放弃)

一开始找到了AprilTag 3的官方github网址https://github.com/AprilRobotics/apriltag,但是按着操作下来不会把python库链接到conda虚拟环境,所以尝试看看有没有别的办法。

法2:pip

在pypi.org官网上找到了两种apriltag安装方法

法2.1:pip install apriltag(放弃)

https://pypi.org/project/apriltag/,看到写的更新时间为2018年,所以应该不是最新版的AprilTag 3,故放弃

在这里插入图片描述

法2.2:pip install pyapriltags(可用)

再一番寻找,找到了2023更新的版本,https://pypi.org/project/pyapriltags/,应该比较靠谱,并且有如下描述,可以判断是AprilTag原作者AprilRobotics开发的官方库。

These are Python bindings for the Apriltags 3 library developed by AprilRobotics.

在这里插入图片描述

这个包的github链接为https://github.com/WillB97/pyapriltags,可以git clone一下里面有pyapriltags/test/test.py测试例程序。

运行时应当注意yaml包版本,过新版本可能会出现报错。

pip install pyyaml==5.3 

2 测试

进入pyapriltags/test/文件夹下,终端中执行

python test.py

在这里插入图片描述

得到如下结果,还没有集成到摄像头里面,但应该是跑通了

TESTING WITH A SAMPLE IMAGE
[Detection object:
tag_family = b'tag36h11'
tag_id = 60
tag_size = 0.065
hamming = 0
decision_margin = 24.732816696166992
homography = [[1.12852846e+01 1.35218628e+01 1.50604021e+02]
 [4.12931891e-01 1.34012105e+01 9.97275963e+01]
 [7.54358942e-03 3.97360209e-02 1.00000000e+00]]
center = [150.60402144  99.72759634]
corners = [[148.07374573 109.20044708]
 [167.49220276 108.4158783 ]
 [153.30262756  89.62454987]
 [132.03965759  90.17698669]]
pose_R = [[ 0.97275506  0.17189059  0.1555674 ]
 [ 0.04820706  0.50638753 -0.86095746]
 [-0.22676788  0.84500017  0.48430469]]
pose_t = [[-0.4970639 ]
 [-0.30799945]
 [ 0.9148219 ]]
pose_err = 1.4234227187581564e-06
, Detection object:
tag_family = b'tag36h11'
tag_id = 82
tag_size = 0.065
hamming = 0
decision_margin = 24.040637969970703
homography = [[ 8.02054019e+00  3.10314575e+00  4.66621306e+02]
 [-8.49221724e-01  1.06309763e+01  8.20201682e+01]
 [-3.96118917e-03  1.89261753e-02  1.00000000e+00]]
center = [466.62130564  82.02016819]
corners = [[451.37316895  91.40827179]
 [470.70095825  90.44836426]
 [482.58377075  72.19226074]
 [462.41769409  73.33588409]]
pose_R = [[ 0.96003341 -0.15463188 -0.2332913 ]
 [-0.14024405  0.45556232 -0.87908736]
 [ 0.24221365  0.87667095  0.41566885]]
pose_t = [[ 0.37945231]
 [-0.37270953]
 [ 0.95850859]]
pose_err = 3.8481665025688905e-07
, Detection object:
tag_family = b'tag36h11'
tag_id = 318
tag_size = 0.065
hamming = 0
decision_margin = 49.61515426635742
homography = [[-1.18572593e+01  3.08253464e+01  5.37597981e+02]
 [-2.09246950e+01  1.09739259e+01  3.75029839e+02]
 [-1.38257708e-02  3.30089272e-02  1.00000000e+00]]
center = [537.59798111 375.02983943]
corners = [[554.31921387 388.7227478 ]
 [546.09033203 358.20751953]
 [519.23352051 359.99130249]
 [528.7734375  392.51019287]]
pose_R = [[-0.08183852  0.99100632 -0.1058722 ]
 [-0.92256889 -0.03513853  0.38422901]
 [ 0.37705318  0.12911913  0.91714729]]
pose_t = [[0.46192837]
 [0.36769891]
 [0.76352648]]
pose_err = 5.429954298671284e-06
, Detection object:
tag_family = b'tag36h11'
tag_id = 328
tag_size = 0.065
hamming = 0
decision_margin = 30.794836044311523
homography = [[ 1.15647124e+01 -1.31398782e+00  3.19180294e+02]
 [ 5.44862875e-01  6.30841077e+00  9.93377081e+01]
 [ 8.41156717e-03 -4.81280377e-03  1.00000000e+00]]
center = [319.18029385  99.33770814]
corners = [[310.40652466 106.50978088]
 [328.24972534 105.81019592]
 [327.72503662  92.35285187]
 [310.04534912  92.81846619]]
pose_R = [[ 9.99085975e-01  4.27458458e-02 -8.01169633e-05]
 [-3.87858311e-02  9.07314404e-01  4.18660042e-01]
 [ 1.79686689e-02 -4.18274269e-01  9.08143030e-01]]
pose_t = [[-0.0521486 ]
 [-0.41622112]
 [ 1.23252283]]
pose_err = 3.00796680270929e-07
, Detection object:
tag_family = b'tag36h11'
tag_id = 387
tag_size = 0.065
hamming = 0
decision_margin = 39.92521286010742
homography = [[-1.31081417e+01  6.81016759e+00  1.79359887e+02]
 [ 3.18874693e-01 -6.31109107e+00  3.22140884e+02]
 [-1.26834699e-03  2.44129945e-02  1.00000000e+00]]
center = [179.35988748 322.14088375]
corners = [[194.28860474 307.61105347]
 [169.14706421 308.99703979]
 [163.6441803  337.43667603]
 [190.05665588 335.90756226]]
pose_R = [[-0.99045956 -0.03036217  0.13441724]
 [ 0.08804465 -0.88980218  0.4477725 ]
 [ 0.10600941  0.45533528  0.88398631]]
pose_t = [[-0.36597334]
 [ 0.26055146]
 [ 0.79989467]]
pose_err = 2.613317301680534e-07
]


TESTING WITH ROTATION IMAGES
Testing image  test_image_rotation_0.png
[[ 0.00855086]
 [-0.03378784]
 [ 0.20410712]] 0.3 0.0 0.05
[[ 0.99958323 -0.02017469  0.02064826]
 [ 0.02462415  0.96918519 -0.2450994 ]
 [-0.01506718  0.2455057   0.96927805]] 0.0 0.0 0.0
Testing image  test_image_rotation_10.png
[[ 0.00899355]
 [-0.03396286]
 [ 0.20464217]] 0.3 0.0 0.05
[[ 0.99553509 -0.01814129 -0.09263244]
 [-0.00525816  0.96917553 -0.24631514]
 [ 0.09424557  0.24570244  0.96475286]] 0.0 0.0 10.0
Testing image  test_image_rotation_20.png
[[ 0.01026933]
 [-0.03436307]
 [ 0.20649642]] 0.3 0.0 0.05
[[ 0.96053902 -0.00980882 -0.27797227]
 [-0.05970563  0.96881099 -0.24050054]
 [ 0.27166161  0.24760666  0.92999511]] 0.0 0.0 20.0
Testing image  test_image_rotation_30.png
[[ 0.01173215]
 [-0.03442039]
 [ 0.20700676]] 0.3 0.0 0.05
[[ 0.9001428  -0.01497421 -0.43533746]
 [-0.09601522  0.96800711 -0.23182602]
 [ 0.42488117  0.25047555  0.86990689]] 0.0 0.0 30.0
Testing image  test_image_rotation_40.png
[[ 0.012491  ]
 [-0.03455821]
 [ 0.20762498]] 0.3 0.0 0.05
[[ 0.81339466 -0.00986884 -0.58162852]
 [-0.13883209  0.96766979 -0.21057264]
 [ 0.56490245  0.25202736  0.78572732]] 0.0 0.0 40.0
Testing image  test_image_rotation_50.png
[[ 0.01392287]
 [-0.03490017]
 [ 0.20890351]] 0.3 0.0 0.05
[[ 0.68644151 -0.01404759 -0.72704932]
 [-0.1685925   0.96949743 -0.17790814]
 [ 0.70737163  0.2446986   0.66313496]] 0.0 0.0 50.0
Testing image  test_image_rotation_60.png
[[ 0.01452253]
 [-0.0352799 ]
 [ 0.2101661 ]] 0.3 0.0 0.05
[[ 0.55337696 -0.00760598 -0.83289621]
 [-0.19765949  0.9701953  -0.14018492]
 [ 0.80913822  0.24220495  0.53538033]] 0.0 0.0 60.0
Testing image  test_image_rotation_70.png
[[ 0.01504444]
 [-0.03561829]
 [ 0.211431  ]] 0.3 0.0 0.05
[[ 0.39452178 -0.00315769 -0.91888116]
 [-0.22194234  0.97005917 -0.09862454]
 [ 0.89168053  0.24284816  0.38200865]] 0.0 0.0 70.0
Testing image  test_image_rotation_-10.png
[[ 0.00737225]
 [-0.03395985]
 [ 0.20490716]] 0.3 0.0 0.05
[[ 0.98644522 -0.02056676  0.16279692]
 [ 0.05954953  0.96934681 -0.23837075]
 [-0.15290416  0.24483417  0.95743227]] 0.0 0.0 -10.0
Testing image  test_image_rotation_-20.png
[[ 0.00605699]
 [-0.03420006]
 [ 0.20600093]] 0.3 0.0 0.05
[[ 0.94790959 -0.01801473  0.31802968]
 [ 0.09644923  0.96776511 -0.23265478]
 [-0.30358682  0.25120942  0.91909133]] 0.0 0.0 -20.0
Testing image  test_image_rotation_-30.png
[[ 0.00486003]
 [-0.03435319]
 [ 0.20670285]] 0.3 0.0 0.05
[[ 0.87250798 -0.01693225  0.48830639]
 [ 0.14092693  0.96564692 -0.21832458]
 [-0.46783483  0.25930546  0.84492085]] 0.0 0.0 -30.0
Testing image  test_image_rotation_-40.png
[[ 0.00344044]
 [-0.03460087]
 [ 0.20756462]] 0.3 0.0 0.05
[[ 0.76359383 -0.01288116  0.64556838]
 [ 0.17905511  0.9648149  -0.19253954]
 [-0.62037386  0.26261432  0.73903315]] 0.0 0.0 -40.0
Testing image  test_image_rotation_-50.png
[[ 0.00257899]
 [-0.0345974 ]
 [ 0.20762641]] 0.3 0.0 0.05
[[ 0.62773692 -0.01039825  0.77835611]
 [ 0.21986308  0.96156606 -0.16447172]
 [-0.7467306   0.27437674  0.6058967 ]] 0.0 0.0 -50.0
Testing image  test_image_rotation_-60.png
[[ 0.00175676]
 [-0.0346137 ]
 [ 0.20774601]] 0.3 0.0 0.05
[[ 0.47993701 -0.00589266  0.87728316]
 [ 0.25294356  0.9584421  -0.13194053]
 [-0.84004763  0.28522627  0.46148234]] 0.0 0.0 -60.0
Testing image  test_image_rotation_-70.png
[[ 0.00084808]
 [-0.03494523]
 [ 0.20876179]] 0.3 0.0 0.05
[[ 0.31758472 -0.00758214  0.94819959]
 [ 0.27671098  0.9571842  -0.08502607]
 [-0.90695699  0.28938022  0.30608514]] 0.0 0.0 -70.0
AVG time per detection:  0.01741302808125814


TESTING WITH MULTIPLE TAGS IMAGES
Testing image  test_image_multiple_01.png
6  tags found:  [22, 24, 58, 85, 144, 198]
Testing image  test_image_multiple_02.png
5  tags found:  [22, 24, 85, 144, 198]
Testing image  test_image_multiple_03.png
6  tags found:  [22, 24, 58, 85, 144, 198]
Testing image  test_image_multiple_04.png
6  tags found:  [22, 24, 58, 85, 144, 198]
Testing image  test_image_multiple_05.png
4  tags found:  [22, 24, 85, 198]
Testing image  test_image_multiple_06.png
6  tags found:  [22, 24, 58, 85, 144, 198]
Testing image  test_image_multiple_07.png
6  tags found:  [22, 24, 58, 85, 144, 198]
Testing image  test_image_multiple_08.png
3  tags found:  [85, 144, 198]
Testing image  test_image_multiple_09.png
5  tags found:  [22, 24, 58, 85, 144]
Testing image  test_image_multiple_10.png
4  tags found:  [24, 58, 85, 198]
AVG time per detection:  0.01161332130432129

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

贴一下测试例程:

from pyapriltags import Detector
import numpy
import os

test_images_path = 'test_files'

visualization = True
try:
    import cv2
except:
    raise Exception('You need cv2 in order to run the demo. However, you can still use the library without it.')

try:
    from cv2 import imshow
except:
    print("The function imshow was not implemented in this installation. Rebuild OpenCV from source to use it")
    print("VIsualization will be disabled.")
    visualization = False

try:
    import yaml
except:
    raise Exception('You need yaml in order to run the tests. However, you can still use the library without it.')

at_detector = Detector(families='tag36h11',
                       nthreads=1,
                       quad_decimate=1.0,
                       quad_sigma=0.0,
                       refine_edges=1,
                       decode_sharpening=0.25,
                       debug=0)

with open(test_images_path + '/test_info.yaml', 'r') as stream:
    parameters = yaml.load(stream)

#### test WITH THE SAMPLE IMAGE ####

print("\n\nTESTING WITH A SAMPLE IMAGE")

img = cv2.imread(test_images_path+'/'+parameters['sample_test']['file'], cv2.IMREAD_GRAYSCALE)
cameraMatrix = numpy.array(parameters['sample_test']['K']).reshape((3,3))
camera_params = ( cameraMatrix[0,0], cameraMatrix[1,1], cameraMatrix[0,2], cameraMatrix[1,2] )

if visualization:
    cv2.imshow('Original image',img)

tags = at_detector.detect(img, True, camera_params, parameters['sample_test']['tag_size'])
print(tags)

color_img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)

for tag in tags:
    for idx in range(len(tag.corners)):
        cv2.line(color_img, tuple(tag.corners[idx-1, :].astype(int)), tuple(tag.corners[idx, :].astype(int)), (0, 255, 0))

    cv2.putText(color_img, str(tag.tag_id),
                org=(tag.corners[0, 0].astype(int)+10,tag.corners[0, 1].astype(int)+10),
                fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                fontScale=0.8,
                color=(0, 0, 255))

if visualization:
    cv2.imshow('Detected tags', color_img)

    k = cv2.waitKey(0)
    if k == 27:         # wait for ESC key to exit
        cv2.destroyAllWindows()


#### test WITH THE ROTATION IMAGES ####

import time

print("\n\nTESTING WITH ROTATION IMAGES")

time_num = 0
time_sum = 0

test_images_path = 'test_files'
image_names = parameters['rotation_test']['files']

for image_name in image_names:
    print("Testing image ", image_name)
    ab_path = test_images_path + '/' + image_name
    if(not os.path.isfile(ab_path)):
        continue
    groundtruth = float(image_name.split('_')[-1].split('.')[0])  # name of test_files image should be set to its groundtruth

    parameters['rotation_test']['rotz'] = groundtruth
    cameraMatrix = numpy.array(parameters['rotation_test']['K']).reshape((3,3))
    camera_params = ( cameraMatrix[0,0], cameraMatrix[1,1], cameraMatrix[0,2], cameraMatrix[1,2] )

    img = cv2.imread(ab_path, cv2.IMREAD_GRAYSCALE)

    start = time.time()
    tags = at_detector.detect(img, True, camera_params, parameters['rotation_test']['tag_size'])

    time_sum+=time.time()-start
    time_num+=1

    print(tags[0].pose_t, parameters['rotation_test']['posx'], parameters['rotation_test']['posy'], parameters['rotation_test']['posz'])
    print(tags[0].pose_R, parameters['rotation_test']['rotx'], parameters['rotation_test']['roty'], parameters['rotation_test']['rotz'])

print("AVG time per detection: ", time_sum/time_num)

#### test WITH MULTIPLE TAGS IMAGES ####

print("\n\nTESTING WITH MULTIPLE TAGS IMAGES")

time_num = 0
time_sum = 0

image_names = parameters['multiple_tags_test']['files']

for image_name in image_names:
    print("Testing image ", image_name)
    ab_path = test_images_path + '/' + image_name
    if(not os.path.isfile(ab_path)):
        continue

    cameraMatrix = numpy.array(parameters['multiple_tags_test']['K']).reshape((3,3))
    camera_params = ( cameraMatrix[0,0], cameraMatrix[1,1], cameraMatrix[0,2], cameraMatrix[1,2] )

    img = cv2.imread(ab_path, cv2.IMREAD_GRAYSCALE)

    start = time.time()
    tags = at_detector.detect(img, True, camera_params, parameters['multiple_tags_test']['tag_size'])
    time_sum+=time.time()-start
    time_num+=1

    tag_ids = [tag.tag_id for tag in tags]
    print(len(tags), " tags found: ", tag_ids)


    color_img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)

    for tag in tags:
        for idx in range(len(tag.corners)):
            cv2.line(color_img, tuple(tag.corners[idx-1, :].astype(int)), tuple(tag.corners[idx, :].astype(int)), (0, 255, 0))

        cv2.putText(color_img, str(tag.tag_id),
                    org=(tag.corners[0, 0].astype(int)+10,tag.corners[0, 1].astype(int)+10),
                    fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                    fontScale=0.8,
                    color=(0, 0, 255))

    if visualization:
        cv2.imshow('Detected tags for ' + image_name    , color_img)

        k = cv2.waitKey(0)
        if k == 27:         # wait for ESC key to exit
            cv2.destroyAllWindows()

print("AVG time per detection: ", time_sum/time_num)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值