深度学习3-tensorflow2.0模型训练-自定义模型训练

本文深入探讨了深度学习中神经网络的正向传播与反向传播,详细介绍了TensorFlow 2.0的自动求导机制,并通过三个实际案例,包括基本模型的自动求导、使用GradientTape自定义训练模型,以及在模型训练中加入评估函数的实现,展示了如何在TensorFlow中灵活应用这些概念。
摘要由CSDN通过智能技术生成


掌握神经网络正向传播与反向传播,tf.GradientTape求导机制以及自定义模型训练操作

1.神经网络的正向传播与反向传播

需要具体了解
在这里插入图片描述
在这里插入图片描述

2.自动求导机制

梯度求解利器:tf.GradientTape
GradientTape是eager模式下计算梯度用的

GradientTape是eager模式下计算梯度用的

watch(tensor)

作用:确保某个tensor被tape追踪

参数:tensor: 一个Tensor或者一个Tensor列表

gradient(target, sources)

作用:根据tape上面的上下文来计算某个或者某些tensor的梯度参数

target: 被微分的Tensor或者Tensor列表,你可以理解为经过某个函数之后的值

sources: Tensors 或者Variables列表(当然可以只有一个值). 你可以理解为函数的某个变量

返回:

一个列表表示各个变量的梯度值,和source中的变量列表一一对应,表明这个变量的梯度。

上面的例子中的梯度计算部分可以更直观的理解这个函数的用法。

在这里插入图片描述

举例:计算y= x2在x=3时的导数**

import tensorflow as tf

x = tf.constant(3.0)
with tf.GradientTape() as g:
    # watch作用:确保每个tensor被tape追踪
    g.watch(x)
    y = x*x
# 求导
# gradient作用是:根据tape来计算某个或某些tensor的梯度,即y导 = 2*x = 2*3 =6
dy_dx = g.gradient(y,x)
print(dy_dx)
#  tf.Tensor(6.0, shape=(), dtype=float32)
loss_object = tf.keras.losses.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值