文章目录
引言
时间序列分析的目的是给定一个已被观测了的时间序列,预测该序列的未来值。ARIMA模型系列模型常用于基于时间序列的短期预测。为方便后面理解,这里简单介绍拖尾与截尾的含义。
-
截尾是指时间序列的自相关函数(ACF)或偏自相关函数(PACF)在某阶后均为0的性质(比如AR的PACF)
-
拖尾是ACF或PACF并不在某阶后均为0的性质(比如AR的ACF)
这里简单介绍时序模型算法中常用的函数
一、模型介绍
1.AR模型
AR模型又称为 p p p阶自回归模型,记 A R ( p ) AR(p) AR(p)。即在 t t t时刻的随机变量 X t X_t Xt的取值 x t x_t xt是前 p p p期 x t − 1 , x t − 2 , . . . , x t − p x_{t-1},x_{t-2},...,x_{t-p} xt−1,xt−2,...,xt−p的多元线性回归。 x t x_t xt受过去 p p p期的序列值的影响。误差项是当期的随机干扰 ε t ε_t εt,为零均值白噪声序列。
平稳AR模型的性质:
2.MA模型
MA模型又称为 q q q阶移动平均模型,记 M A ( q ) MA(q) MA(q)。即在 t t t时刻的随机变量 X t X_t Xt的取值 x t x_t xt是前 q q q期 随 机 扰 动 ε t − 1 , ε t − 2 , . . . , ε t − p 随机扰动ε_{t-1},ε_{t-2},...,ε_{t-p} 随机扰动εt−1,εt−2,...,εt−p的多元线性回归。 x t x_t xt受过去 q q q期的误差项的影响。误差项是当期的随机干扰 ε t ε_t εt,为零均值白噪声序列。
平稳MA模型的性质:
3.ARMA模型
ARMA模型又称为自回归移动平均模型,记 A R M A ( p , q ) ARMA(p,q) ARMA(p,q)。即在 t t t时刻的随机变量 X t X_t X