时序算法—AR、MA、ARMA和ARIMA模型以及Auto ARIMA

本文介绍了ARIMA模型系列,包括AR、MA、ARMA和ARIMA模型,详细阐述了ARIMA建模流程,包括平稳性检验、模型定阶等步骤,并探讨了Auto ARIMA的使用,包括参数介绍和案例分析,简化了时间序列预测模型的构建过程。
摘要由CSDN通过智能技术生成

引言

  时间序列分析的目的是给定一个已被观测了的时间序列,预测该序列的未来值。ARIMA模型系列模型常用于基于时间序列的短期预测。为方便后面理解,这里简单介绍拖尾与截尾的含义。

  • 截尾是指时间序列的自相关函数(ACF)或偏自相关函数(PACF)在某阶后均为0的性质(比如AR的PACF)
    在这里插入图片描述

  • 拖尾是ACF或PACF并不在某阶后均为0的性质(比如AR的ACF)
    在这里插入图片描述
    这里简单介绍时序模型算法中常用的函数
    在这里插入图片描述

一、模型介绍

1.AR模型

  AR模型又称为 p p p阶自回归模型,记 A R ( p ) AR(p) AR(p)。即在 t t t时刻的随机变量 X t X_t Xt的取值 x t x_t xt是前 p p p x t − 1 , x t − 2 , . . . , x t − p x_{t-1},x_{t-2},...,x_{t-p} xt1,xt2,...,xtp的多元线性回归。 x t x_t xt受过去 p p p期的序列值的影响。误差项是当期的随机干扰 ε t ε_t εt,为零均值白噪声序列。
在这里插入图片描述
平稳AR模型的性质:
在这里插入图片描述

2.MA模型

  MA模型又称为 q q q阶移动平均模型,记 M A ( q ) MA(q) MA(q)。即在 t t t时刻的随机变量 X t X_t Xt的取值 x t x_t xt是前 q q q 随 机 扰 动 ε t − 1 , ε t − 2 , . . . , ε t − p 随机扰动ε_{t-1},ε_{t-2},...,ε_{t-p} εt1,εt2,...,εtp的多元线性回归。 x t x_t xt受过去 q q q期的误差项的影响。误差项是当期的随机干扰 ε t ε_t εt,为零均值白噪声序列。
在这里插入图片描述
平稳MA模型的性质:
在这里插入图片描述

3.ARMA模型

  ARMA模型又称为自回归移动平均模型,记 A R M A ( p , q ) ARMA(p,q) ARMA(p,q)。即在 t t t时刻的随机变量 X t X_t X

Auto-ARIMAARIMA之间的区别在于模型参数的选择和拟合过程。ARIMA是一种时间序列模型,用于预测未来的值。它的参数包括p、d和q,分别代表自回归阶数、差分阶数和移动平均阶数。这些参数需要手动选择,并且需要对数据进行多次拟合来找到最佳的参数组合。 而Auto-ARIMA是一种自动选择ARIMA模型参数的方法。它通过进行差分测试来确定差分d的顺序,并在定义的参数范围内拟合模型。如果启用了季节选项,Auto-ARIMA还会进行Canova-Hansen测试来确定季节差分的最优顺序D,并寻找最优的P和Q超参数。为了找到最好的模型Auto-ARIMA使用信息准则(如AIC、BIC等)进行优化,并返回具有最小信息准则值的ARIMA模型。 因此,Auto-ARIMA相比于ARIMA具有更高的自动化程度,可以自动选择最佳的模型参数,减少了手动调参的工作量。同时,Auto-ARIMA还可以处理非平稳数据,并提供了更准确的预测结果。 #### 引用[.reference_title] - *1* [时序算法ARMAARMA和ARIMA模型以及Auto ARIMA](https://blog.csdn.net/weixin_46649052/article/details/115406977)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Python数据分析案例-分别使用时间序列ARIMA、SARIMAX模型Auto ARIMA预测国内汽车月销量](https://blog.csdn.net/maiyida123/article/details/117967762)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值