数字信号处理笔记——离散傅里叶变换定理及其证明

数字信号处理笔记(二)


主要知识:离散傅里叶变换定理及其证明

适用对象:初学数字信号处理的同学以及考研备考的同学(尤其是目标院校是:南京理工大学)

重要程度: ★ ★ ★ ★ \bigstar \bigstar \bigstar \bigstar (满5颗星)


设序列 x [ n ] x[n] x[n] g [ n ] g[n] g[n] h [ n ] h[n] h[n] 的DTFT为 X ( e j ω ) X(e^{j\omega}) X(ejω) G ( e j ω ) G(e^{j\omega}) G(ejω) H ( e j ω ) H(e^{j\omega}) H(ejω) ,m为常数。

序列移位

内容:
x [ n ] = g [ n − m ] X ( e j ω ) = G ( e j ω ) e − j ω m \begin{aligned} x\left[ n \right]&=g\left[ n-m \right] \\ X\left( {{e}^{j\omega }} \right)&=G\left( {{e}^{j\omega }} \right){{e}^{-j\omega m}} \\ \end{aligned} x[n]X(ejω)=g[nm]=G(ejω)ejωm
证明:
X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] e − j ω n = ∑ n = − ∞ ∞ g [ n − m ] e − j ω n → n − m = k = ∑ n = − ∞ ∞ g [ k ] e − j ω ( m + k ) = e − j ω m G ( e j ω ) \begin{aligned} X\left( {{e}^{j\omega }} \right)&=\sum\limits_{n=-\infty }^{\infty }{x\left[ n \right]{{e}^{-j\omega n}}} \\ & =\sum\limits_{n=-\infty }^{\infty }{g\left[ n-m \right]}{{e}^{-j\omega n}} \\ \xrightarrow{n-m=k}&=\sum\limits_{n=-\infty }^{\infty }{g\left[ k \right]{{e}^{-j\omega \left( m+k \right)}}} \\ & ={{e}^{-j\omega m}}G\left( {{e}^{j\omega }} \right) \end{aligned} X(ejω)nm=k =n=x[n]ejωn=n=g[nm]ejωn=n=g[k]ejω(m+k)=ejωmG(ejω)

频谱移位

内容:
x [ n ] = e j ω 0 n g [ n ] X ( e j ω ) = G ( e j ( ω − ω 0 ) ) \begin{gathered} x\left[ n \right] = {e^{j{\omega _0}n}}g\left[ n \right] \\ X\left( {{e^{j\omega }}} \right) = G\left( {{e^{j\left( {\omega - {\omega _0}} \right)}}} \right) \\ \end{gathered} x[n]=ejω0ng[n]X(ejω)=G(ej(ωω0))
证明:
X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] e − j ω n = ∑ n = − ∞ ∞ e j ω 0 n g [ n ] e − j ω n = ∑ n = − ∞ ∞ g [ n ] e − j ( ω − ω 0 ) n = G ( e j ( ω − ω 0 ) ) \begin{aligned} X\left( {{e^{j\omega }}} \right) &= \sum\limits_{n = - \infty }^\infty {x\left[ n \right]} {e^{ - j\omega n}} \\ & = \sum\limits_{n = - \infty }^\infty {{e^{j{\omega _0}n}}g\left[ n \right]{e^{ - j\omega n}}} \\ & = \sum\limits_{n = - \infty }^\infty {g\left[ n \right]{e^{ - j\left( {\omega - {\omega _0}} \right)n}}} \\ & = G\left( {{e^{j\left( {\omega - {\omega _0}} \right)}}} \right) \\ \end{aligned} X(ejω)=n=x[n]ejωn=n=ejω0ng[n]ejωn=n=g[n]ej(ωω0)n=G(ej(ωω0))

卷积定理

内容:
x [ n ] = g [ n ] ∗ h [ n ] X ( e j ω ) = G ( e j ω ) H ( e j ω ) \begin{aligned} x\left[ n \right] &= g\left[ n \right] * h\left[ n \right]\\ X\left( {{e^{j\omega }}} \right) &= G\left( {{e^{j\omega }}} \right)H\left( {{e^{j\omega }}} \right) \end{aligned} x[n]X(ejω)=g[n]h[n]=G(ejω)H(ejω)
证明:
X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] e − j ω n = ∑ n = − ∞ ∞ { g [ n ] ∗ h [ n ] } e − j ω n = ∑ n = − ∞ ∞ { ∑ m = − ∞ ∞ g [ m ] h [ n − m ] } e − j ω n = ∑ m = − ∞ ∞ g [ m ] { ∑ n = − ∞ ∞ h [ n − m ] e − j ω n } = ∑ m = − ∞ ∞ g [ m ] H ( e j ω ) e − j ω m = H ( e j ω ) ∑ m = − ∞ ∞ g [ m ] e − j ω m = H ( e j ω ) G ( e j ω ) \begin{aligned} X\left( {{e^{j\omega }}} \right) &= \sum\limits_{n = - \infty }^\infty {x\left[ n \right]{e^{ - j\omega n}}} \\ &= \sum\limits_{n = - \infty }^\infty {\left\{ {g\left[ n \right]*h\left[ n \right]} \right\}{e^{ - j\omega n}}} \\ & = \sum\limits_{n = - \infty }^\infty {\left\{ {\sum\limits_{m = - \infty }^\infty {g\left[ m \right]h\left[ {n - m} \right]} } \right\}{e^{ - j\omega n}}} \\ &= \sum\limits_{m = - \infty }^\infty {g\left[ m \right]\left\{ {\sum\limits_{n = - \infty }^\infty {h\left[ {n - m} \right]{e^{ - j\omega n}}} } \right\}} \\ &= \sum\limits_{m = - \infty }^\infty {g\left[ m \right]H\left( {{e^{j\omega }}} \right){e^{ - j\omega m}}} \\ & = H\left( {{e^{j\omega }}} \right)\sum\limits_{m = - \infty }^\infty {g\left[ m \right]{e^{ - j\omega m}}} \\ &= H\left( {{e^{j\omega }}} \right)G\left( {{e^{j\omega }}} \right) \end{aligned} X(ejω)=n=x[n]ejωn=n={g[n]h[n]}ejωn=n={m=g[m]h[nm]}ejωn=m=g[m]{n=h[nm]ejωn}=m=g[m]H(ejω)ejωm=H(ejω)m=g[m]ejωm=H(ejω)G(ejω)

调制定理

内容:
x [ n ] = g [ n ] h [ n ] X ( e j ω ) = 1 2 π ∫ − π π G ( e j θ ) H ( e j ( ω − θ ) ) d θ \begin{aligned} x\left[ n \right]&=g\left[ n \right]h\left[ n \right] \\ X\left( {{e}^{j\omega }} \right)&=\frac{1}{2\pi }\int_{-\pi }^{\pi }{G\left( {{e}^{j\theta }} \right)H\left( {{e}^{j\left( \omega -\theta \right)}} \right)d\theta } \\ \end{aligned} x[n]X(ejω)=g[n]h[n]=2π1ππG(ejθ)H(ej(ωθ))dθ
证明:
X ( e j ω ) = ∑ n = − ∞ ∞ g [ n ] h [ n ] e − j ω n = ∑ n = − ∞ ∞ [ 1 2 π ∫ − π π G ( e j ω 1 ) e j ω 1 n d ω 1 ] h [ n ] e − j ω n = 1 2 π ∫ − π π G ( e j ω 1 ) [ ∑ n = − ∞ ∞ h [ n ] e − j ( ω − ω 1 ) n ] d ω 1 = 1 2 π ∫ − π π G ( e j ω 1 ) H ( e j ( ω − ω 1 ) ) d ω 1 \begin{aligned} X\left( {{e}^{j\omega }} \right)&=\sum\limits_{n=-\infty }^{\infty }{g\left[ n \right]h\left[ n \right]{{e}^{-j\omega n}}} \\ & =\sum\limits_{n=-\infty }^{\infty }{\left[ \frac{1}{2\pi }\int_{-\pi }^{\pi }{G\left( {{e}^{j{{\omega }_{1}}}} \right){{e}^{j{{\omega }_{1}}n}}d{{\omega }_{1}}} \right]h\left[ n \right]{{e}^{-j\omega n}}} \\ & =\frac{1}{2\pi }\int_{-\pi }^{\pi }{G\left( {{e}^{j{{\omega }_{1}}}} \right)\left[ \sum\limits_{n=-\infty }^{\infty }{h\left[ n \right]{{e}^{-j\left( \omega -{{\omega }_{1}} \right)n}}} \right]}d{{\omega }_{1}} \\ & =\frac{1}{2\pi }\int_{-\pi }^{\pi }{G\left( {{e}^{j{{\omega }_{1}}}} \right)H\left( {{e}^{j\left( \omega -{{\omega }_{1}} \right)}} \right)d{{\omega }_{1}}} \end{aligned} X(ejω)=n=g[n]h[n]ejωn=n=[2π1ππG(ejω1)ejω1ndω1]h[n]ejωn=2π1ππG(ejω1)[n=h[n]ej(ωω1)n]dω1=2π1ππG(ejω1)H(ej(ωω1))dω1

频域微分

内容:
x [ n ] = n g [ n ] X ( e j ω ) = j d G ( e j w ) d ω \begin{aligned} x\left[ n \right]&=ng\left[ n \right] \\ X\left( {{e}^{j\omega }} \right)&=j\frac{dG\left( {{e}^{jw}} \right)}{d\omega } \\ \end{aligned} x[n]X(ejω)=ng[n]=jdωdG(ejw)
证明:
G ( e j ω ) = ∑ n = − ∞ ∞ g [ n ] e − j ω n d G ( e j ω ) d ω = − j ∑ n = − ∞ ∞ n g [ n ] e − j ω n n g [ n ] ⟷ D T F T I D T F T j d G ( e j ω ) d ω \begin{aligned} G\left( {{e}^{j\omega }} \right)&=\sum\limits_{n=-\infty }^{\infty }{g\left[ n \right]{{e}^{-j\omega n}}} \\ \frac{dG\left( {{e}^{j\omega }} \right)}{d\omega }&=-j\sum\limits_{n=-\infty }^{\infty }{ng\left[ n \right]{{e}^{-j\omega n}}} \\ ng\left[ n \right]&\underset{IDTFT}{\overset{DTFT}{\longleftrightarrow}}j\frac{dG\left( {{e}^{j\omega }} \right)}{d\omega } \\ \end{aligned} G(ejω)dωdG(ejω)ng[n]=n=g[n]ejωn=jn=ng[n]ejωnIDTFTDTFTjdωdG(ejω)

帕斯瓦尔定理

内容:
{ ∑ n = − ∞ ∞ g [ n ] h ∗ [ n ] = 1 2 π ∫ − π π G ( e j ω ) H ∗ ( e j ω ) d ω ∑ n = − ∞ ∞ ∣ g [ n ] ∣ 2 = 1 2 π ∫ − π π ∣ G ( e j ω ) ∣ 2 d ω \left\{ \begin{aligned} & \sum\limits_{n=-\infty }^{\infty }{g\left[ n \right]{{h}^{*}}\left[ n \right]}=\frac{1}{2\pi }\int_{-\pi }^{\pi }{G\left( {{e}^{j\omega }} \right)H^*\left( {{e}^{j\omega }} \right)d\omega } \\ & \sum\limits_{n=-\infty }^{\infty }{{{\left| g\left[ n \right] \right|}^{2}}=\frac{1}{2\pi }\int_{-\pi }^{\pi }{{{\left| G\left( {{e}^{j\omega }} \right) \right|}^{2}}d\omega }} \\ \end{aligned} \right. n=g[n]h[n]=2π1ππG(ejω)H(ejω)dωn=g[n]2=2π1ππG(ejω)2dω
证明:
h [ n ] = 1 2 π ∫ − π π H ( e j ω ) e j ω n d ω h ∗ [ n ] = 1 2 π ∫ − π π H ∗ ( e j ω ) e − j ω n d ω \begin{aligned} h\left[ n \right]&=\frac{1}{2\pi }\int_{-\pi }^{\pi }{H\left( {{e}^{j\omega }} \right){{e}^{j\omega n}}d\omega } \\ {{h}^{*}}\left[ n \right]&=\frac{1}{2\pi }\int_{-\pi }^{\pi }{{{H}^{*}}\left( {{e}^{j\omega }} \right){{e}^{-j\omega n}}d\omega } \\ \end{aligned} h[n]h[n]=2π1ππH(ejω)ejωndω=2π1ππH(ejω)ejωndω

∑ n = − ∞ ∞ g [ n ] h ∗ [ n ] = ∑ n = − ∞ ∞ g [ n ] { 1 2 π ∫ − π π H ∗ ( e j ω ) e − j ω n d ω } = 1 2 π ∫ − π π H ∗ ( e j ω ) [ ∑ n = − ∞ ∞ g [ n ] e − j ω n ] d ω = 1 2 π ∫ − π π H ∗ ( e j ω ) G ( e j ω ) d ω \begin{aligned} \sum\limits_{n=-\infty }^{\infty }{g\left[ n \right]{{h}^{*}}\left[ n \right]}&=\sum\limits_{n=-\infty }^{\infty }{g\left[ n \right]}\left\{ \frac{1}{2\pi }\int_{-\pi }^{\pi }{{{H}^{*}}\left( {{e}^{j\omega }} \right){{e}^{-j\omega n}}d\omega } \right\} \\ & =\frac{1}{2\pi }\int_{-\pi }^{\pi }{{{H}^{*}}\left( {{e}^{j\omega }} \right)\left[ \sum\limits_{n=-\infty }^{\infty }{g\left[ n \right]{{e}^{-j\omega n}}} \right]}d\omega \\ & =\frac{1}{2\pi }\int_{-\pi }^{\pi }{{{H}^{*}}\left( {{e}^{j\omega }} \right)}G\left( {{e}^{j\omega }} \right)d\omega \end{aligned} n=g[n]h[n]=n=g[n]{2π1ππH(ejω)ejωndω}=2π1ππH(ejω)[n=g[n]ejωn]dω=2π1ππH(ejω)G(ejω)dω

  • 11
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

在路上-正出发

哈哈,多少是个心意

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值