目录
本文从 “极端大风事件” 的角度,理解为什么工程上要讨论所谓“50 年一遇极大风速”,以及它和 Gumbel 分布之间的联系。
一、为什么要关心“50 年一遇极大风速”?
在自然界中,风速并不是每天都一样,它有时大有时小,偶尔还会出现特别强烈的大风。对于像风力发电机这样的大型工程来说,如果要保证安全和稳定运行,就需要考虑一个可能出现的**“最极端”**风速——这个风速能帮助工程师合理设计发电机的叶片、塔筒以及基础结构等,避免在极端情况下发生严重损坏。
国际标准 IEC 61400-1(针对风力发电机的设计)就提出了一个“50 年一遇极大风速”概念,常记作 (v_{\mathrm{ref}})。比方说:
- 风力机若能承受 50 m / s 50\,\mathrm{m/s} 50m/s 的极大风速,就属于IEC I 类;
- 能承受 42.5 m / s 42.5\,\mathrm{m/s} 42.5m/s~ 37.5 m / s 37.5\,\mathrm{m/s} 37.5m/s 的则属于 II 类或 III 类;
- 这个“50 年一遇”的数字并不是拍脑袋决定的,而是基于极值统计进行推算。
那么,如何通过统计方法得到一个“50 年一遇”的风速呢?下面就来讲讲背后的原理。
二、极端大风事件与“独立性”假设
1. 风速观测与“极端事件”
在讨论“最大风速”之前,我们通常先要把观测到的风事件分门别类。想象我们有许多次的风速记录,一年中可能发生过若干场大风。但是如果一年内同一天的多个记录,它们可能属于同一次风暴,并不算多个独立极端事件。
因此,工程上往往先做一个划分:每一次大风过程被认定为一个“独立事件”。如果我们要统计多年的风速,就需要明确哪些大风过程是相互独立的。这样做的好处是,才能比较准确地预测“每年最大的那一场风”的分布。
2. “独立事件”为什么重要?
要想正确推出“50 年一遇极端风速”,必须假设不同事件之间相对独立,互不影响。只有在这种情况下,统计学里的公式(比如后面提到的乘积概率、Poisson 过程等)才能用得上。
三、Poisson(泊松)过程:预测大风出现的次数
大风发生可能被看作是一种随机现象,随着时间的推移,可能会出现一场又一场的强风。科学家常用Poisson 过程来描述类似“事件随机发生”的过程。
-
Poisson 过程的特点:
当你观察的时间越来越长,出现“大风事件”的次数也越多;并且在短时间里发生事件的概率与在更长时间里发生的概率大体可以按比例缩放。 -
若在单位时间(比如一年)内,大风事件发生的平均次数是 λ \lambda λ,那么在 T T T 年内,平均会发生 λ × T \lambda \times T λ×T 次。
-
λ \lambda λ 越大,代表大风出现得越频繁。
通过这个原理,工程师可以定义 “平均发生周期” = 1 λ =\tfrac{1}{\lambda} =λ1 表示大风在多长时间大致来一次。当我们说“50 年一遇”风速,往往意思是:大约每 50 年有一次大概率会超过这个风速。
四、Gumbel 分布:用来描述极端值的统计模型
1. 极值分布的基本想法
假设我们观察了很多年,每一年都会有一个“最大”风速,记作 u 1 , u 2 , … , u n u_1,\,u_2,\,\dots,u_n u1,u2,…,un。我们关心的就是这些**“年最大值”**的分布特点:它通常不再是普通的正态分布,而是一种“极值分布”。
在极值理论中,人们发现当研究“最大值”时,常见的极值分布主要有三大类:Frechet、Weibull、Gumbel。Gumbel 分布是其中使用最广、形式也最简单的一种。
2. Gumbel 分布长什么样?
它的数学形式常被写成
F
(
x
)
=
exp
[
−
exp
(
−
x
−
β
α
)
]
,
F(x) =\; \exp\!\Bigl[-\,\exp\bigl(-\,\tfrac{x-\beta}{\alpha}\bigr)\Bigr],
F(x)=exp[−exp(−αx−β)],
其中
α
\alpha
α 和
β
\beta
β 是需要通过统计数据来估计的两个参数:
- β \beta β(位置参数)越大,表示该分布整体向右移动,意味着极值可能更大;
- α > 0 \alpha>0 α>0(尺度参数)则控制分布的“陡峭”或“分散”程度。
当我们想要算“ T T T 年极端风速”时,可以根据一年最大风速的分布 F ( x ) F(x) F(x),再用一些对数变换得到“ T T T 年最大值”的分布,并解出那个“最可能的极值”位置。
五、如何用实际数据估计“50 年一遇风速”?
1. 数据收集与排序
举个小例子:假设我们在某个海边地区连续测了 2 年 的日最大风速(每天都记录当日最大值)。最后选出其中的独立大风事件——保证每次大风之间间隔足够长、不重叠。我们得到了一份样本列表:
独立大风最大风速 | (单位:m/s) |
---|---|
27.9 | |
28.5 | |
29.0 | |
30.2 | |
…(此处略) | |
36.4 |
假设总共测到了 22 个独立大风事件。
2. 拟合 Gumbel 分布
- 排队号 & 计算概率:
- 先把这些风速从小到大排好,给出排名 j = 1 , 2 , … , n j=1,2,\dots,n j=1,2,…,n。
- 对应的累积概率 F j ≈ j n + 1 F_j \approx \frac{j}{n+1} Fj≈n+1j(常用经验公式)。
- 做 Gumbel 变换:
- 定义 y j = − ln [ − ln ( F j ) ] y_j = -\ln\bigl[-\,\ln(F_j)\bigr] yj=−ln[−ln(Fj)]。
- 以 x j x_j xj(风速)为横坐标, y j y_j yj 为纵坐标,做一条拟合的直线。若相关系数不错,说明 Gumbel 分布可以较好地描述这些最大风速。
- 得到 (\alpha,;\beta):
- 回归后的直线方程可以写成:
y = x − β α . y = \frac{x - \beta}{\,\alpha\,}. y=αx−β. - 根据斜率和截距就能反算出 (\alpha) 和 (\beta)。
- 回归后的直线方程可以写成:
3. 外推到 “50 年一遇”
如果我们只测了 2 年的极端风速,却想知道“50 年一遇”是多少,就要把上面统计得到的 (\alpha,;\beta) 带入一种外推公式:
x
50
=
α
y
50
+
β
,
x_{50} = \alpha\,y_{\!50} + \beta,
x50=αy50+β,
这里
y
50
y_{50}
y50 常常包含
ln
(
50
)
\ln(50)
ln(50) 等对数项,表示我们把“一年最大值”分布扩展到“50 年最大值”分布。结果往往会给出一个比 2 年里所见的最大风还要更大的设计风速。
在某些文献或标准中,你会见到类似的公式:
x T = α [ y + ln T ] + β 或 x T = α y + β + a ln ( T ) . x_{T} = \alpha \,\bigl[y + \ln T\bigr] + \beta \quad\text{或}\quad x_{T} = \alpha \,y + \beta + a\,\ln(T). xT=α[y+lnT]+β或xT=αy+β+aln(T).
本质是通过 Gumbel 分布的对数关系,把 T T T 年的极值“推算”出来。
4. 一个具体数字示例
在某书中的案例,如果两年观测出来的数据拟合后得到 α ≈ 2.6545 \alpha \approx 2.6545 α≈2.6545,并经过回归推算得知:
- “2 年一遇”的极大风速约为 38 m / s 38\,\mathrm{m/s} 38m/s;
- 进一步外推至“50 年一遇”的极大风速约为 46.6 m / s 46.6\,\mathrm{m/s} 46.6m/s。
对风力发电机来说,如果它能在 10 分钟平均风速达到 46.6 m/s 时还能安全运转,便说明它能够应付这片地区的极端风况。
六、Poisson 过程与 Gumbel 分布的联结
很多时候,我们并不直接说“每年只有一个大风”,而是把大风事件看作Poisson 过程随机到来。只要记住每年发生大风的次数服从某种平均率 λ \lambda λ,就可以推导出“多年里的最大风速”分布怎样在时间上累积。最终会出现类似的极值分布形式,Gumbel 只是其中的一个典型。
七、还有别的极值分布吗?
是的,除了 Gumbel 分布,还有:
- Frechet 分布(适用于一些重尾分布的情形);
- Weibull 分布(适用于右边有上限的情形);
- 广义极值分布(GEV)(它把上面三种都包进一个公式里,通过形状参数来区别)。
当我们说“50 年一遇极大风速”在设计中很重要,往往也是根据经验或数据分析,觉得 Gumbel 分布(或其通用形式 GEV)能够合理地刻画极值情况。
八、总结与小结
-
为什么关注极端大风?
- 风力发电机或高层建筑都必须承受某种“极端载荷”,否则一旦出现超大风就会面临风险。
-
“50 年一遇”是什么意思?
- 这是极值理论中常用的一个概念,表示平均 50 年才出现一次或更严重情况的大风。数字背后源于统计分析,而并非只是“猜测”。
-
Gumbel 分布的用法
- 收集极端事件样本(比如“每年的最大风速”);
- 拟合到 Gumbel 分布,得到参数;
- 利用对数关系外推更长时间尺度的极端值,比如“50 年一遇风速”。
-
Poisson 过程与极值分析
- 把大风看作随机事件在时间轴上发生;
- 在足够长的时间里,通过(\lambda)等参数评估出现极端大风的机会;
- 最终得出设计或防护所需要的极端值标准。
小案例:假想城市的“50 年一遇”风速
- 观测时间:2 年
- 搜集到的极端风事件:22 次(各次最大风速记录如下)
- 通过线性回归:得到 KaTeX parse error: Can't use function '\)' in math mode at position 20: …ha \approx 2.65\̲)̲,\(\beta \appro…(具体数字举例)
- 计算
- 当 T = 2 T=2 T=2 年时,最大风速 x 2 ≈ 38 m / s x_2\approx 38\,\mathrm{m/s} x2≈38m/s;
- 当 T = 50 T=50 T=50 年时,带入对数项,得到 x 50 ≈ 46.6 m / s x_{50}\approx 46.6\,\mathrm{m/s} x50≈46.6m/s。
- 结论:如果我们要建一台风力发电机,那么它最好能承受46.6 m/s 的 10 分钟平均风速,才算符合“50 年一遇风速”的设计要求。
寄语
或许看上去有一些公式,但请记住最核心的思路并不复杂:
- 时间拉长 → “更极端”的风事件可能出现;
- 统计观测 → 将观测到的最大风速数据做排序或回归,估计出分布参数;
- 外推 → 用数学公式推断更长时间(如 50 年)内可能出现的“极大值”。