SA的空间注意力和通道注意力

本文围绕Attention机制展开,介绍了SA和HD分类,阐述空间和通道注意力机制原理。详细分析BAM、CBAM和Coordinate Attention三种模型,BAM利用空洞卷积,CBAM先后分开处理通道和空间注意力,Coordinate Attention改进前两者不足,还给出其他注意力机制参考论文。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Attention机制理解笔记(空间注意力+通道注意力+CBAM+BAM)_落了一地秋的博客-CSDN博客_空间注意力模型Attention机制理解笔记声明Attention分类(主要SA和CA)spitial attentionchannel attentionSA + CA(spitial attention+channel attention)加强SA+CA理解空间注意力机制和通道注意力机制解释attention机制Attention模型架构1.空间注意力模型(spatial attention)2.通道注意力机制3.空间和通道注意力机制的融合CBAM 和 BAMBLOG1的笔记重点及总结BLOG2重点看下这篇文章BAMhttps://blog.csdn.net/weixin_46239293/article/details/119739759?spm=1001.2101.3001.6650.5&utm_medium=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~Rate-5-119739759-blog-105760359.pc_relevant_recovery_v2&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~Rate-5-119739759-blog-105760359.pc_relevant_recovery_v2&utm_relevant_index=6注意力机制技术总结-技术圈STN(2015)论文原文:Spatial Transformer Networks这是一篇过时的文章,读者不必了解太多,但它的主要思想却值得写一下https://jishuin.proginn.com/p/763bfbd56c67

一、前言

SA(soft attention)包括空间注意力和通道注意力,目的是选择细粒度的重要像素点,是pixel级。

HD(hard attention):是 local 注意力,致力于搜索粗糙的潜在判别区域,它们是region级

空间注意力:
一般来说对于同一像素点不同通道求均值,再经过一些卷积和上采样的运算得到spitial attention mask,空间特征每层像素点被赋予不同的权重

通道注意力:

就是针对 N C H W 的每个C赋予权重

空间注意力 + 通道注意力:

有BAM和CBAM两种代码方式,spitial attention 矩阵与channel attention矩阵相乘得到 SA+CA的效果。

二、Bottlenet attention Module(BAM 2018)

具体结构如下图所示:利用了空洞卷积来获取更大的感受野,增加了通道注意力,方式是在feature map上全局平均池化,再降维升维,如右下角所示使用了上面那篇论文中的Attention Residual learning方式来融合。

 三、Convolutional Block Attention Module (CBAM 2018

CBAM同样是使用空间注意力和通道注意力,不过与BAM不同的是,通道注意力并不是像BAM那样融合在空间注意力内再做归一化,而是先后分开进行

通道注意力的生成方式:先在feature maps上进行全局最大池化和全局平均池化得到两个1维向量,再经过共享的MLP层,再进行相加,sigmoid归一化。

空间注意力的生成方式:在通道上进行最大池化和平均池化,得到两个feature map,经过7x7卷积,得到一个feature map,再BN,sigmoid归一化。

注:这种空间注意力只考虑了局部信息,在后面CVPR2021的Coordinate Attention中有所改进。

四、Coordinate Attention(2021)

这篇论文基于SE和CBAM改进而来,作者认为SE没有考虑空间信息CBAM通过对每个位置的通道上进行池化,由于经过几层卷积和降采样后的feature maps的每个位置只包含原图的一个局部区域,因此这种做法只考虑了局部区域信息。为此,作者提出了一种新的attention机制--Coordinate Attention。

Coordinate Attention利用两个1D全局池化操作将沿垂直和水平方向的input features分别聚合为两个单独的direction-aware feature maps。 然后将具有嵌入的特定方向信息的这两个特征图分别编码为两个attention map,每个attention map都沿一个空间方向捕获输入特征图的远距离依存关系。 位置信息因此可以被保存在所生成的attention map中。 然后通过乘法将两个attention map都应用于input feature maps,以强调注意区域的表示。

具体结构如图c所示,简单说来,Coordinate Attention是通过在水平方向和垂直方向上进行平均池化,再进行transform对空间信息编码,最后把空间信息通过在通道上加权的方式融合。

五、其他注意力机制的参考论文

1. Spatial Transformer Networks

2. Object-Part Attention Model for Fine-grained Image Classifification

3. Residual Attention Network for Image Classifification

4. BAM: Bottleneck Attention Module

5. CBAM: Convolutional Block Attention Module

6. Non-local Neural Networks

7. Pyramid Attention Network for Semantic Segmentation

8. Squeeze-and-Excitation Networks

9. CCNet: Criss-Cross Attention for Semantic Segmentation

10. GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

11. Dual Attention Network for Scene Segmentation

12. Coordinate Attention for Effificient Mobile Network Design

<think>好的,我现在需要帮助用户理解如何实现空间注意力通道注意力机制的特征融合及拼接。首先,我得回顾一下用户提供的引用内容,看看有没有相关的信息可以借鉴。 用户提到了引用[1]中的BEVFusion中的特征融合模块使用了通道注意力机制,引用[2]解释了通道注意力空间注意力的原理,而引用[3]提到了迭代注意力特征融合(iAFF)的方法,涉及两阶段的注意力模块。用户的问题是如何将这两种注意力的特征进行融合拼接,所以需要结合这些引用中的信息。 首先,我需要明确空间注意力通道注意力各自的机制。通道注意力,比如SENet中的SE模块,通过对通道间的依赖关系进行建模,学习每个通道的重要性,通常使用全局平均池化来获取通道描述子,然后通过全连接层生成权重。空间注意力则是关注特征图中的空间位置,例如CBAM中的空间注意力模块,通过最大池化平均池化结合,生成空间权重图,突出重要区域。 接下来,特征融合的方法。根据引用[3],iAFF方法使用两阶段的注意力模块,先初步整合输入特征,再用另一个注意力模块生成融合权重。这可能适用于将空间通道注意力结合的情况。 那么,如何将空间注意力通道注意力的特征拼接起来呢?可能的步骤包括:分别应用空间通道注意力得到加权的特征,然后将这两个特征进行拼接,或者先拼接再通过注意力进一步融合。需要具体的方法。 比如,可以先将输入特征分别通过空间注意力通道注意力模块,得到两个加权的特征,然后将这两个特征在通道维度上进行拼接,再通过卷积层调整通道数。或者,按照iAFF的方法,先拼接,再使用注意力模块来融合。 另外,引用[3]中的iAFF提到了初始整合特征的方法,可能涉及到使用注意力模块来融合输入特征。这可能意味着在拼接之后,再应用一个注意力模块来调整融合后的特征的重要性。 需要考虑的是,如何设计这样的网络结构。例如,对于输入特征X,首先分别应用通道注意力(生成权重C)空间注意力(生成权重S),得到X*CX*S,然后将这两个结果拼接,再通过卷积或其他操作融合。或者,先拼接原始特征XY,再应用混合注意力模块。 此外,还需要考虑参数共享计算效率的问题。如果使用两阶段的注意力,可能会增加计算量,但效果可能更好。需要平衡模型复杂度性能。 可能的实现步骤: 1. 对输入特征分别应用通道注意力空间注意力,得到两个不同的特征表示。 2. 将这两个特征在通道维度上进行拼接。 3. 对拼接后的特征进行卷积操作,调整通道数,减少维度。 4. 或者,按照iAFF的方法,先拼接,再应用另一个注意力模块来生成融合权重,从而得到更有效的融合特征。 在代码实现上,可能需要定义通道注意力空间注意力的模块,然后在forward函数中将它们应用并拼接。例如,在PyTorch中,可以使用torch.cat进行拼接,再通过1x1卷积调整通道数。 需要验证这种方法的有效性,可能需要参考已有的工作,比如CBAM结合了通道空间注意力,但它们是顺序应用的,而不是拼接。而iAFF则是先拼接再应用注意力,可能更适合特征融合的场景。 总结,可能的融合方法有两种:并行应用两种注意力后拼接,或者先拼接再应用注意力进行融合。根据引用[3]的iAFF,第二种方法可能更有效,因为它通过两阶段注意力优化了融合过程。</think>### 空间注意力通道注意力特征融合及拼接方法 #### 1. 特征拼接基础方法 空间注意力通道注意力分别关注特征的不同维度: - **通道注意力**:通过全局池化全连接层学习通道权重,例如SENet[^2]。 - **空间注意力**:通过空间池化卷积生成空间权重图,例如CBAM。 **简单拼接实现步骤**: 1. 对输入特征分别应用通道注意力空间注意力,得到加权特征: $$ \mathbf{F}_{\text{channel}} = \mathbf{X} \odot \mathbf{W}_c, \quad \mathbf{F}_{\text{spatial}} = \mathbf{X} \odot \mathbf{W}_s $$ 其中 $\mathbf{W}_c$ $\mathbf{W}_s$ 为注意力权重。 2. **通道维度拼接**:将两个特征沿通道维度拼接: $$ \mathbf{F}_{\text{concat}} = \text{Concat}(\mathbf{F}_{\text{channel}}, \mathbf{F}_{\text{spatial}}) $$ 3. 通过 $1\times1$ 卷积调整通道数,减少冗余。 ```python import torch import torch.nn as nn class ChannelAttention(nn.Module): def __init__(self, channels): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channels, channels // 4), nn.ReLU(), nn.Linear(channels // 4, channels), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class SpatialAttention(nn.Module): def __init__(self): super().__init__() self.conv = nn.Sequential( nn.Conv2d(2, 1, kernel_size=7, padding=3), nn.Sigmoid() ) def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) y = torch.cat([avg_out, max_out], dim=1) y = self.conv(y) return x * y class FusionModule(nn.Module): def __init__(self, channels): super().__init__() self.ca = ChannelAttention(channels) self.sa = SpatialAttention() self.conv = nn.Conv2d(2*channels, channels, kernel_size=1) def forward(self, x): f_channel = self.ca(x) f_spatial = self.sa(x) fused = torch.cat([f_channel, f_spatial], dim=1) return self.conv(fused) ``` --- #### 2. 迭代注意力融合(iAFF)[^3] 针对简单拼接可能存在的冗余问题,iAFF采用两阶段注意力优化融合过程: 1. **初步拼接**:将原始特征 $\mathbf{X}$ $\mathbf{Y}$ 拼接。 2. **注意力融合**:通过注意力模块生成融合权重: $$ \mathbf{F}_{\text{fused}} = \alpha \cdot \mathbf{X} + (1-\alpha) \cdot \mathbf{Y} $$ 其中 $\alpha$ 由注意力模块生成。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值