华为:LLM通过图进行路径推理

在这里插入图片描述

📖标题:Path-of-Thoughts: Extracting and Following Paths for Robust Relational Reasoning with Large Language Models
🌐来源:arXiv, 2412.17963

🌟摘要

🔸大型语言模型(LLM)拥有丰富的语义知识,但经常难以完成复杂的推理任务,特别是在亲属关系或空间推理等关系推理问题上。
🔸在本文中,我们提出了思想路径(PoT),这是一种新的框架,旨在通过将任务分解为三个关键阶段来解决关系推理问题:图提取、路径识别和推理。与以前的方法不同,PoT有效地提取了一个与任务无关的图,该图标识了问题上下文中的关键实体、关系和属性。随后,PoT在图中识别出与所提问题对应的相关推理链,从而促进对潜在答案的推理。
🔸对四个需要长推理链的基准数据集的实验评估表明,PoT在不需要微调或大量LLM调用的情况下,以显著的优势(最多21.3%)超过了最先进的基线。此外,与之前的神经符号学方法相反,PoT通过利用图的组合性质,对LLM错误表现出更好的弹性。

🛎️文章简介

🔸研究问题:大语言模型(LLM)在多跳关系推理任务中存在浅层推理和错误提取问题。
🔸主要贡献:论文提出了Path-of-Thoughts(PoT)框架,通过图提取、路径识别和推理三个阶段,显著提升了关系推理任务的性能,并增强了模型对噪声的鲁棒性。

📝重点思路

🔸图提取:使用LLM从文本故事中提取实体和关系,构建图结构。
🔸路径识别:在图结构中识别所有可能的推理路径,连接查询的源节点和目标节点。
🔸推理:对每条推理路径,调用外部推理器(如符号求解器或LLM)来推断目标关系。
🔸实验验证:在多个基准数据集上进行实验,验证PoT框架的有效性和鲁棒性。

🔎分析总结

🔸性能提升:PoT框架在多个数据集上显著优于现有的基线方法,尤其是在需要长推理链的任务中。
🔸鲁棒性增强:PoT框架对LLM提取错误和噪声关系表现出较强的鲁棒性,能够通过探索多条推理路径来缓解错误的影响。
🔸模块贡献分析:实验表明,图提取和路径识别模块对整体性能有重要贡献,识别关键关系和推理路径的顺序对有效推理至关重要。

💡个人观点

论文的核心就是在推理前,先识别出实体关系构建出一个图,然后在图上把所有潜在路径都跑一次。

🧩附录

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值