【现代通信原理】4 数字基带传输
重点:
-
什么是数字基带信号
-
三个关键问题:差错、利用率、补偿
-
脉冲码型:单极性多级性 NRZ、单极性多级性 RZ、差分、归零
-
一元多元 PAM,
- 表达式、原理、框图,
- 速率,传输带宽(近似:第一个过零点),性能对比
-
(核心重点)理想低通系统的传输特性,以及在理想低通下基带传输的带宽与频带利用率
-
(核心重点)码间串扰(基带、带通)、为什么有;
- 无码间串扰的时域频域条件、理想低通特性、奈奎斯特带宽(最窄)、奈奎斯特速率(最快);方法(切割、平移、叠加、对折)
-
升余弦滚降滤波器,滚降因子,求最大传输码率
数字基带传输系统模型
① 什么是数字基带信号?
- 未经调制的数字信号,所占据频谱从零频或很低频率开始。
② 如何传输数字基带信号?
- 数字基带传输:数字基带信号不经载波调制而直接在信道上传输。
- 数字频带传输:数字基带信号经载波调制后在信道上传输。
③ 为什么要研究数字基带传输?
- 近程数据通信系统中广泛采用,并有迅速发展的趋势。
- 基带传输中包含了频带传输的许多基本问题。
- 任何一个线性调制的频带传输系统可等效为基带传输系统来研究
线性调制
- AM
- DSB
- SSB
- VSB
非线性调制
- FM
- PM
数字基带传输系统模型
H ( f ) = G T ( f ) ⋅ C ( f ) ⋅ G R ( f ) H(f) = G_T(f) \cdot C(f) \cdot G_R(f) H(f)=GT(f)⋅C(f)⋅GR(f)
关键问题
① 如何设计总传输特性 H ( f ) H(f) H(f),使得接收端恢复出的序列{an’}与发送端序列 a n {a_n} an 之间的差错尽可能少?
② 如何设计总传输特性 H ( f ) H(f) H(f) ,使得在物理上可实现时,频带利用率尽可能高?
③ 当总传输特性 H ( f ) H(f) H(f) 达不到设计要求时,可以采取什么办法进行补偿?
数字基带传输信号
数字脉冲幅度调制 PAM
PAM,Pulse Amplitude Modulation
- 二进制(Binary)序列:记为 0/1(或 +1/-1)
- PAM 采用不同幅度的脉冲构建传输信号
- 时隙(Slot):一个时隙一个符号的传输
- 定时(Timing):接收时对准相应脉冲,检测幅度。
脉冲形式(码型)
单极性(Unipolar) 与 双极性(Polar)
- 单极性 NRZ 有直流分量,连续 0 时无法提取定时分量
- 双极性 NRZ 每个码之间都有 0 电平间隔,0,1 等概出现时无直流分量,恢复时判决电平 0
不归零(NRZ) 与 归零(RZ)
- 单极性 RZ,可直接提取定时分量
- 双极性 RZ,双极性 NRZ 的特点 + 定时分量提取,容易识别码元起止时刻
- 从占空比看,RZ 码占空比 50%,NRZ 100%
传号(Mark) 与 空号(Space)
- 传号差分码:“1 变 0 不变”
- 空号差分码:“0 变 1 不变”
差分码/相对码 与 电平码
- 差分码,相对码,用差分波形传送代码可以消除设备初始状态的影响,特别是在相位调制系统中用于解决载波相位模糊问题
一元 PAM
表达式
s ( t ) = [ ∑ n = − ∞ + ∞ b n δ ( t − n T s ) ] ∗ g T ( t ) = ∑ n = − ∞ + ∞ a n g T ( t − n T s ) s(t)=\left[\sum_{n=-\infty}^{+\infty} b_{n} \delta\left(t-n T_{s}\right)\right] * g_{T}(t)=\sum_{n=-\infty}^{+\infty} a_{n} g_{T}\left(t-n T_{s}\right) s(t)=[n=−∞∑+∞bnδ(t−nTs)]∗gT(t)=n=−∞∑+∞angT(t−nTs)
多元 PAM
表达式
s ( t ) = [ ∑ n = − ∞ + ∞ a n δ ( t − n T s ) ] ∗ g T ( t ) = ∑ n = − ∞ + ∞ a n g T ( t − n T s ) s(t)=\left[\sum_{n=-\infty}^{+\infty} a_{n} \delta\left(t-n T_{s}\right)\right] * g_{T}(t)=\sum_{n=-\infty}^{+\infty} a_{n} g_{T}\left(t-n T_{s}\right) s(t)=[n=−∞∑+∞anδ(t−nTs)]∗gT(t)=n=−∞∑+∞angT(t−nTs)
2PAM 脉冲宽度更窄, 要求定时更准
MPAM 幅度层次多,要求分辨细致,易出错
速率与带宽
回顾第一章的有效性度量:
数字符号的速率、传输信号的带宽
回顾计网:
Nyquist 比特率(理论上最大比特率)(根据无码间串扰条件)
比 特 率 = 2 × 带 宽 × log 2 L \mathrm{比特率} = 2 \times \mathrm{带宽} \times \log_2{L} 比特率=2×带宽×log2L
L:表示数据信号电平的数量
香农容量定理
通 道 容 量 = 带 宽 × log 2 ( 1 + S N R ) \mathrm{通道容量} = \mathrm{带宽} \times \log_2{(1+\mathrm{SNR})} 通道容量=带宽×log2(1+SNR)
信噪比的计量单位是 dB,其计算方法是 10lg(Ps/Pn),其中 Ps 和 Pn 分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20Lg(Vs/Vn),Vs 和 Vn 分别代表信号和噪声电压的“有效值”
PAM 传输信号是基带信号。PAM 信号的带宽由脉冲形状决定。
NRZ 矩形 PAM 信号带宽 = 无限
主要部分: B T = R S = 1 T s ( H z ) B_T = R_S = \frac{1}{T_s} (\mathrm{Hz}) BT=RS=Ts1(Hz) (第一零点)
B T = { R s 矩形 NRZ脉冲 (最简单) 0.5 R s 理论最小值 (最 “乐观”) B_{T}= \begin{cases}R_{s} & \text { 矩形 NRZ脉冲 (最简单) } \\ 0.5 R_{s} & \text { 理论最小值 (最 “乐观”) }\end{cases} BT={Rs0.5Rs 矩形 NRZ脉冲 (最简单) 理论最小值 (最 “乐观”)
无论是二元或多元,BW 与 R s R_s Rs 直接关联 因为,“基层”传输是按 T s T_s Ts 进行的。
基带传输信号带宽计算
确定
- 带宽
- 直流分量
- 定时时刻
数字基带信号的功率谱
本章通过功率谱描述频谱特性可以证明 m ( t ) m(t) m(t) 是平稳随机过程。因此可以先推导 m ( t ) m(t) m(t) 的自相关函数,再求自相关函数的傅氏变换,得到数字基带信号 m ( t ) m(t) m(t) 的功率谱密度。
在通信系统中,信息符号等概率出现且符号之间互不相关。为了使频谱分析的物理概念清楚,推导过程简化,我们可以把 s(t)分解成稳态波 v(t)和交变波 u(t)。所谓稳态波,即是随机序列 s(t)的统计平均分量,它取决于每个码元内出现 g1(t)、 g2(t)的概率加权平均,且每个码元统计平均波形相同在此条件下,可以推导出 m(t)的功率谱密度。交变波的的功率谱 Pu(f)是连续谱,它与 g1(t)和 g2(t)的频谱以及出现概率 P 有关。根据连续谱可以确定随机序列的带宽。
稳态波的功率谱 Pv(f)是冲击强度取决 |Ck|2 的离散线谱,根据离散谱可以确定随机序列是否包含直流分量(k=0)和定时分量(k=1)。C_k----傅里叶变换系数,
可以分为两部分(忽略推导)
功率谱与第一过零点带宽
单极性有冲击,归零比不归零第一过零点带宽大一倍
功率谱密度曲线
R z = 1 T S R_z = \frac{1}{T_S} Rz=TS1
双极性无冲击
噪声中的接收方法与性能
- 滤除噪声(匹配滤波最佳)
- 测量波形得到 r 值
- 通过门限判决(门限居“正中”)
- 多元符号用格雷编码
最佳基带传输:双极性信号 + 匹配滤波器接收
- 双极性比单极性好 3dB;
- 匹配滤波器比 LPF 至少好 3dB
基本接收方法
最佳接受方法
- 匹配滤波器与脉冲 g T ( t ) g_{T}(t) gT(t) “相匹配”, 在时隙末端 t 0 = n T s t_{0}=n T_{s} t0=nTs 处抽样输出 r n r_{n} rn,
- 判决门限两种输出峰值的中心。
匹配滤波器是输出端的信号瞬时功率与噪声平均功率的比值最大的线性滤波器也就是说有最大的信噪比。其滤波器的传递函数形式是信号频谱的共轭。
一、滤波器的相频特性与信号相频特性共轭,使得输出信号所有频率分量都在输出端同相叠加而形成峰值。
二、按照信号的幅频特性对输入波形进行加权,以便最有效地接收信号能量而抑制干扰的输出功率。
即当信号与噪声同时进入滤波器时,它使信号成分在某一瞬间出现尖峰值,而噪声成分受到抑制。
比较:
眼图
ISI :码间串扰
- 如何消除 I S I \mathrm{ISI} ISI ?
- 如何抑制 n ( t ) n(t) n(t) ?
眼图
- 可以从中观察到 I S I \mathrm{ISI} ISI 、 n ( t ) n(t) n(t) 的强弱
- 指示接受滤波器的调整,以减小 I S I \mathrm{ISI} ISI
观察方法
(a) 无 ISI 的情况——大“眼睛”© ,线迹细而清晰;
(b) 有 ISI 的情况——小“眼睛”(d),且线迹杂乱。
存在噪声时,眼图线迹变成了模糊的带状线;噪声越大,线条越宽、越模糊,“眼睛”张开的越小,甚至闭合。
二进制双极性一个周期只有一只眼睛,M 进制双极性纵向显示的 M-1 个,三电平 AMI、HDB3 扫描周期为 nTB 时可以看到并排的 n 只眼睛
二元信号的传输性能
数字传输的可靠性指标
- 误码 (符号) 率: P e ≈ 错误符号数目 总传输的符号数目 P_{e} \approx \frac{\text { 错误符号数目 }}{\text { 总传输的符号数目 }} Pe≈ 总传输的符号数目 错误符号数目
- 误比特率: P b ≈ 错误bit数目 总传输的bit 数目 \quad P_{b} \approx \frac{\text { 错误bit数目 }}{\text { 总传输的bit 数目 }} Pb≈ 总传输的bit 数目 错误bit数目
错误的根本原因是误码, 可折合为 bit 错。
- 对于二元系统, P b = P e P_{b}=P_{e} Pb=Pe;
- P e P_{e} Pe 与 P b P_{b} Pb 相关联, P b ≤ P e , P b − min = P e K P_{b} \leq P_{e}, P_{b_{-} \min }=\frac{P_{e}}{K} Pb≤Pe,Pb−min=KPe 。
降低误比特率:格雷码
二元传输的误码性能与曲线
感性了解即可
背景知识:Q 函数
标准正态分布的右尾函数,又叫(标准正态分布的)互补累计分布函数
E b / N 0 E_b/N_0 Eb/N0:评价比特能量/噪声功率谱密度,反应信号噪声能量之比
误比特率曲线比较:
- 纵向比较:如 10dB 处,下边的性能较好
- 横向比较:如 1 0 5 10^5 105 处,左边的性能好 3dB(12.5dB 减 9.5dB)。
最佳基带传输:双极性信号 + 匹配滤波器接收
- 双极性比单极性好 3dB
- 匹配滤波器比 LPF 至少好 3dB
一般多元信号的接收
接收方法
最小误码率
略
误码率与误比特率
最小误码率: Q ( k E s N 0 ) Q\left(\sqrt{k \frac{E_{s}}{N_{0}}}\right) Q(kN0Es)
格雷编码
背景资料
依据——传输中符号出错时几乎总是错 成相邻的符号值(因为幅度邻近)
技巧——相邻的符号值只差 1bit
常用码型
线路码型 Line code —— 适合于线路传输的“波形格式”
设计原则
- 直流分量:可否在交流耦合电路中传输;
- 定时信息:是否包含足够的定时信息;
- 差分编码:不必担心传输中的反相;
- 传输带宽:通常要尽量小;
- 抗噪性能:不同的波形,抗噪能力不同;
- 检错能力:具有规律性的特征,可检错;
- 尽量简单。
AMI 交替传号反转码
AMI, Alternative Mark Inversion
规则:1——交替的(+1)或(-1);0——零电平(0)
缺点:长连“0”串时,无法提取时钟。
应用:AMI 码 3 电平信号,是北美电话系统中的接口标准之一。
曼彻斯特码 / Biphase 数字双相码
规则: 1-“下跳脉冲”;0-“上跳脉冲
优点:数字双相码没有直流分量,包含丰富的定时信息。
缺点:占用的带宽加大。
应用:用于 10Mbps 的以太网中。
Miller 密勒码 / 延迟调制码
密勒(Miller)码/延迟调制码
规则: 1-“下跳”或“上跳脉冲”;0-负或正电平,连 0 时要交替。
优点:密勒码是数字双相码经过一级触发器后的结果,克服了数字双相码的定时相位不确定性。
CMI 传号反转码
传号反转码(CMI)
规则:1-交替的正或负电平;0-上跳脉冲
特点:没有直流分量,跳变丰富,容易接收、易于检错。
应用:ITU-T 建议的一种接口标准。
HDB3 3 阶高密度双极性码 ( AMI 码的改进)
规则:
- 先进行 AMI 编码(B 为 +1 或-1)。
- 检查连 0,将 0000 替换为 000V 或 B00V(V 为破坏元,+1或-1 )使 B 正负交替、 V 正负交替;V 与前面 B 同极性。
特点:HDB3 具有 AMI 码的优点,译码简单,且容易提取定时时钟。
应用:ITU-T 推荐使用的码型之一。
带限信道上的传输方法
ISI 码间串扰
r n = y ( n T s ) = ∑ k = − ∞ ∞ a k h ( n T s − k T s ) + y n ( n T s ) = a n h ( 0 ) + ∑ k = − ∞ k ≠ n ∞ a k h ( n T s − k T s ) + y n ( n T s ) = 原 始 信 号 + 码 间 串 扰 + 加 性 噪 声 \begin{aligned} r_{n} &=y\left(n T_{s}\right) \\ &=\sum_{k=-\infty}^{\infty} a_{k} h\left(n T_{s}-k T_{s}\right)+y_{n}\left(n T_{s}\right)\\ &=a_{n} h(0)+\sum_{k=-\infty \atop k \neq n}^{\infty} a_{k} h\left(n T_{s}-k T_{s}\right)+y_{n}\left(n T_{s}\right)\\ &=原始信号+码间串扰+加性噪声 \end{aligned} rn=y(nTs)=k=−∞∑∞akh(nTs−kTs)+yn(nTs)=anh(0)+k=nk=−∞∑∞akh(nTs−kTs)+yn(nTs)=原始信号+码间串扰+加性噪声
码间串扰 (Inter-Symbol Interference) —— 符号彼此间的干扰
原因:系统传递函数的不良(包括信道、 接收脉冲与发送滤波器等)。
消除码间串扰的设计思想
Nyquist 准则 与 无 ISI 条件
Nyquist 准则
分两个问题,先不讨论噪声。考虑 h(t),an 相互抵消不现实,如果前一码元到达后一码元判决时刻衰减为 0 就能实现,实际上有拖尾,很难实现,因此只要在 T+t0,2T+t0…抽样时刻为 0 即可
∑ k = − ∞ + ∞ H ( f − k R s ) = 常数 \sum_{k=-\infty}^{+\infty} H\left(f-k R_{s}\right)=\text { 常数 } k=−∞∑+∞H(f−kRs)= 常数
时域条件
h ( k T B ) = { 1 , k = 0 0 , k 为其他整数 h\left(k T_{B}\right)=\left\{\begin{array}{cc} 1, & k=0 \\ 0, & k \text { 为其他整数 } \end{array}\right. h(kTB)={1,0,k=0k 为其他整数
频域条件
∑ i H ( ω + 2 π i T B ) = T B , ω ≤ p i T B \sum_i H (\omega + \frac{2\pi i}{T_B})=T_B, \quad \omega \leq \frac{pi}{T_B} i∑H(ω+TB2πi)=TB,ω≤TBpi
带宽条件
以 R B = 1 / T B R_B=1/T_B RB=1/TB 的速率传输时,无 ISI
该条件称为奈奎斯特第一准则,基带系统总特性凡能满足此要求均可消除 ISI。可写成三部分之和, H ( ω − 2 π / T s ) + H ( ω ) + H ( ω + 2 π / T s ) H(\omega-2\pi/Ts)+H(\omega)+H(\omega+2\pi/Ts) H(ω−2π/Ts)+H(ω)+H(ω+2π/Ts),若能等效为理想低通滤波器
含义:“切割,平移/对折,叠加” => 理想 LPF
检验或设计 H ( w ) H(w) H(w) 能否消除码间串扰的理论依据。
但是物理无法实现
无 ISI 重要结论
-
R
s
R_{s}
Rs 波特的基带信号的最小带宽
=
R
s
/
2
H
z
=R_{s} / 2 \mathrm{~Hz}
=Rs/2 Hz 。
因为, 传输它的 B W \mathrm{BW} BW 最小需要 R s / 2 H z R_{s} / 2 \mathrm{~Hz} Rs/2 Hz (无 ISI 要求: W ≥ R s / 2 W \geq R_{s} / 2 W≥Rs/2 ) - 基带传输系统的奈奎斯特速率(无 ISI 最高的速率)-
2
W
2 \mathrm{~W}
2 W 波特。
因为, W W W 宽的信道每秒最多传输 2 W 2 W 2W 符号(无 ∣ S ∣ |S| ∣S∣ 要求: R s ≤ 2 W R_{s} \leq 2 W Rs≤2W )
频带利用率 一一 单位带宽的传输速率,
η = 传输速率 占用频带宽度 = R s B T ( baud / H z ) = R b B T ( b p s / H z ) \eta=\frac{\text { 传输速率 }}{\text { 占用频带宽度 }}=\frac{R_{s}}{B_{T}}(\text { baud } / \mathrm{Hz})=\frac{R_{b}}{B_{T}}(\mathrm{bps} / \mathrm{Hz}) η= 占用频带宽度 传输速率 =BTRs( baud /Hz)=BTRb(bps/Hz)
H(ω) 的设计
理想低通
理想低通特性冲击响应为 Sa 函数,在正负 kTB 有零点,发送序列间隔为 TB 时可以利用这些零点,接收端在 kTB 抽样实现无 ISI
奈奎斯特带宽(最窄带宽)= f N f_N fN
f N = B = 1 2 T B f_N = B =\frac{1}{2T_B} fN=B=2TB1
奈奎斯特速率(无 ISI 的最高波特率)= 2 f N 2f_N 2fN
2 f N = R B = 1 T B 2f_N = R_B =\frac{1}{T_B} 2fN=RB=TB1
无 ISI 基带系统的最高频带利用率 = 2
η = R B / B = 2 ( B a u d / H z ) = 2 log 2 M ( b p s / H z ) \begin{aligned} \eta = R_B/B &= 2 &(\mathrm{Baud}/\mathrm{Hz})\\ &= 2 \log_2{M} &(\mathrm{bps}/\mathrm{Hz}) \end{aligned} η=RB/B=2=2log2M(Baud/Hz)(bps/Hz)
R B R_B RB 码元传输速率
若以高于 1 / T B 1/T_B 1/TB 波特的速率传输码元,将存在 ISI,最高频带利用率为 2Baud/Hz,冲激响应波形衰减震荡幅度较大,定时稍有偏差就出现严重码间串扰,仅具有理论上的指导意义
升余弦滚降滤波器
理想低通特性存在问题 :
- 特性陡峭 不易实现;
- 响应曲线尾部收敛慢,摆幅大,对定时要求严格。
解决方法
- 对 H ( ω ) H(\omega) H(ω) 在 f N f_N fN 处按“奇对称”条件进行“圆滑/滚降”
频响函数 Raised-Cosine RC:
H ( ω ) = { T B , 0 ≤ ∣ ω ∣ < ( 1 − α ) π T B T B 2 [ 1 + sin T B 2 α ( π T B − ω ) ] , ( 1 − α ) π T B ≤ ∣ ω ∣ < ( 1 + α ) π T B 0 , ∣ ω ∣ ≥ ( 1 + α ) π T B H(\omega)=\left\{\begin{array}{cc} T_{B}, & 0 \leq|\omega|<\frac{(1-\alpha) \pi}{T_{B}} \\ \frac{T_{B}}{2}\left[1+\sin \frac{T_{B}}{2 \alpha}\left(\frac{\pi}{T_{B}}-\omega\right)\right], & \frac{(1-\alpha) \pi}{T_{B}} \leq|\omega|<\frac{(1+\alpha) \pi}{T_{B}} \\ 0, & |\omega| \geq \frac{(1+\alpha) \pi}{T_{B}} \end{array}\right. H(ω)=⎩⎪⎪⎨⎪⎪⎧TB,2TB[1+sin2αTB(TBπ−ω)],0,0≤∣ω∣<TB(1−α)πTB(1−α)π≤∣ω∣<TB(1+α)π∣ω∣≥TB(1+α)π
h ( t ) = sin π t / T B π t / T B ⋅ cos α π t / T B 1 − 4 α 2 t 2 / T B 2 h(t)=\frac{\sin \pi t / T_{B}}{\pi t / T_{B}} \cdot \frac{\cos \alpha \pi t / T_{B}}{1-4 \alpha^{2} t^{2} / T_{B}^{2}} h(t)=πt/TBsinπt/TB⋅1−4α2t2/TB2cosαπt/TB
滚降因子: 0 ≤ α ≤ 1 0 \leq \alpha \leq 1 0≤α≤1
绝对带宽: W R C = ( 1 + α ) R s / 2 W_{RC} = (1+\alpha)R_s/2 WRC=(1+α)Rs/2
RC 满足奈奎斯特准则, 因此, 无 ISI。
η = 2 1 + α ( baud / H z ) = 2 log 2 M 1 + α ( b p s / H z ) \eta=\frac{2}{1+\alpha}(\text { baud } / H z)=\frac{2 \log _{2} M}{1+\alpha}(b p s / H z) η=1+α2( baud /Hz)=1+α2log2M(bps/Hz)
频谱宽度与边沿特性都容易控制, 又能较好地近似实现。
例如, (单位: baud/Hz )
- α = 0.0 : H R C ( f ) \alpha=0.0: H_{R C}(f) α=0.0:HRC(f) 正是理想 LPF, η = 2 \eta=2 η=2;
- α = 0.5 : H R C ( f ) \alpha=0.5: H_{R C}(f) α=0.5:HRC(f) 边沿相当平缓, η = 1.25 \eta=1.25 η=1.25;
- α = 1.0 , H R C ( f ) \alpha=1.0, H_{R C}(f) α=1.0,HRC(f) 边沿非常平坦, η = 1 \eta=1 η=1 。
让抽样时刻恰好为 0
例
滚降系数 α ∈ ( 0 , 1 ) \alpha \in (0,1) α∈(0,1)
-
α = 0 \alpha=0 α=0
- 优点 η = 2 \eta=2 η=2 最高
- 缺点 不易实现,响应曲线收敛慢(鲁棒性性低)
-
α = 1 \alpha=1 α=1
- 缺点 η = 1 \eta=1 η=1 最低
- 优点 容易实现,响应曲线收敛快(鲁棒性性好)
综合解决:部分响应技术(略)
参考
作业
设随机脉冲序列的码元速率为 1200Baud,问:
(1)采用单极性归零码时,求其第一零点带宽,并画出功率谱密度图。
(2)采用双极性不归零码,求其第一零点带宽,并画出功率谱密度图。
(1)
第一零点带宽=2400Hz
(2)
第一零点带宽=1200Hz
某采用四进制信号传输的基带系统其总频率特性 |H(f)| 是滚降系数为 0.4、绝对带宽为 7kHz 的余弦滚降特性。
(1)求无 ISI 传输时的最高比特信息速率和最高频带利用率(b/s/Hz)
(2)以 15kb/s 的比特速率传输时,有无 ISI?