《视觉SLAM十四讲》第三章阅读笔记(二)

《视觉SLAM十四讲》第三章阅读笔记(二)

阅读本章前建议阅读以下两篇文章,作为理论支撑:
《视觉SLAM十四讲》第三章阅读笔记(一)
《视觉SLAM十四讲》第三章阅读笔记(补充阅读,Eigen介绍)

1、欧拉角

将一个旋转分成绕三个轴旋转的三个角称为欧拉角。分别是:
绕车体 Z Z Z轴旋转,得到的角为偏航角 y a w yaw yaw
绕旋转之后的 Y Y Y轴旋转得到的角,为俯仰角 p i t c h pitch pitch
绕旋转之后的 X X X轴旋转得到的角,为滚转角 r o l l roll roll
简记为:

类型定义
偏航角绕Z轴旋转
俯仰角绕Y轴旋转
滚转角绕X轴旋转

其中通常所称的 r p y rpy rpy角的旋转方式为 Z Y X ZYX ZYX

欧拉角 ⇔ \bm{\Leftrightarrow} 旋转矩阵

绕Z轴旋转时定义:
R Z = [ c o s y − s i n y 0   s i n y c o s y 0   0 0 1 ] \bm R_Z=\begin{bmatrix} cos\bm y &-sin\bm y &0\\\ sin\bm y &cos\bm y &0\\\ 0&0 &1\end{bmatrix} RZ=cosy siny 0sinycosy0001
绕Y轴旋转时定义
R Y = [ c o s p 0 s i n p   0 1 0   − s i n p 0 c o s p ] \bm R_Y=\begin{bmatrix} cos\bm p &0&sin\bm p \\\ 0&1 &0\\\ -sin\bm p&0 &cos\bm p\end{bmatrix} RY=cosp 0 sinp010sinp0cosp
绕X轴旋转时定义
R X = [ 1 0 0   0 c o s r s i n r   0 c o s r s i n r ] \bm R_X=\begin{bmatrix}1 &0&0\\\ 0&cos\bm r&sin\bm r \\\ 0&cos\bm r&sin\bm r\end{bmatrix} RX=1 0 00cosrcosr0sinrsinr
以ZYX的旋转方式为例,可以求解得到旋转的向量为:
R = R Z R Y R X \bm R=\bm R_Z\bm R_Y\bm R_X R=RZRYRX
R = [ c y c p c y s p s r − s y c r c y s p c r + s y s r   s y c p s y s p s r + c y c r s y s p c r − c y s r   − s p c p s r c p c r ] \bm R=\begin{bmatrix}c\bm yc\bm p &c\bm ys\bm ps\bm r-s\bm yc\bm r&c\bm ys\bm pc\bm r+s\bm ys\bm r\\\ s\bm yc\bm p&s\bm ys\bm ps\bm r+c\bm yc\bm r&s\bm ys\bm pc\bm r-c\bm ys\bm r \\\ -s\bm p&c\bm ps\bm r&c\bm pc\bm r\end{bmatrix} R=cycp sycp spcyspsrsycrsyspsr+cycrcpsrcyspcr+sysrsyspcrcysrcpcr
反解出欧拉角为:
{ r = a t a n ( R ( 32 ) R ( 33 ) ) , p = a r c s i n ( − R ( 31 ) ) y = a r c t a n ( R ( 21 ) R ( 11 ) ) , \left\{ \begin{array}{lr} \bm r=atan(\frac{\bm R(32)}{\bm R(33)}),& \\ \bm p=arcsin(-\bm R(31))\\ \bm y=arctan(\frac{\bm R(21)}{\bm R(11)}),& \end{array} \right. r=atan(R(33)R(32)),p=arcsin(R(31))y=arctan(R(11)R(21)),
注意其他几种形式
R X Y Z = [ c p c y − c p c y s p   c r s y + c y s r s p c r c y − s r s p s y − c p s r   s r s y − c r s p c y c y s r + c r s p s y c p c r ] \bm R_{XYZ}=\begin{bmatrix}c\bm pc\bm y &-c\bm pc\bm y&s\bm p\\\ c\bm rs\bm y+c\bm ys\bm rs\bm p&c\bm rc\bm y- s\bm rs\bm ps\bm y&-c\bm ps\bm r\\\ s\bm rs\bm y-c\bm rs\bm pc\bm y&c\bm ys\bm r+c\bm rs\bm ps\bm y&c\bm pc\bm r\end{bmatrix} RXYZ=cpcy crsy+cysrsp srsycrspcycpcycrcysrspsycysr+crspsyspcpsrcpcr
R X Z Y = [ c p c y − s p c p s y   s r s y + c r c y s p c r c p c r s p r s y − c y s r   c y s r s p − c r s y c p s r c r c y + s r s p s y ] \bm R_{XZY}=\begin{bmatrix}c\bm pc\bm y &-s\bm p&c\bm ps\bm y\\\ s\bm rs\bm y+c\bm rc\bm ys\bm p&c\bm rc\bm p&c\bm rs\bm prs\bm y-c\bm ys\bm r\\\ c\bm ys\bm rs\bm p-c\bm rs\bm y&c\bm ps\bm r&c\bm rc\bm y+s\bm rs\bm ps\bm y\end{bmatrix} RXZY=cpcy srsy+crcysp cysrspcrsyspcrcpcpsrcpsycrsprsycysrcrcy+srspsy
R Y X Z = [ c r c y + s r s p s r c y s p s r − c r s y c p s r   c p s y c y c p − s p   c r s p s y − c y s r c r c y s p + s r s y c r c p ] \bm R_{YXZ}=\begin{bmatrix}c\bm rc\bm y +s\bm rs\bm ps\bm r&c\bm ys\bm ps\bm r- c\bm rs\bm y&c\bm ps\bm r\\\ c\bm ps\bm y&c\bm yc\bm p&-s\bm p\\\ c\bm rs\bm ps\bm y-c\bm ys\bm r&c\bm rc\bm ys\bm p+s\bm rs\bm y&c\bm rc\bm p\end{bmatrix} RYXZ=crcy+srspsr cpsy crspsycysrcyspsrcrsycycpcrcysp+srsycpsrspcrcp
R Y Z X = [ c r c p s r s y − c r s y c p s r   c p s y c y c p − s p   c r s p s y − c y s r c r c y s p + s r s y c r c p ] \bm R_{YZX}=\begin{bmatrix}c\bm rc\bm p &s\bm rs\bm y-c\bm rs\bm y&c\bm ps\bm r\\\ c\bm ps\bm y&c\bm yc\bm p&-s\bm p\\\ c\bm rs\bm ps\bm y-c\bm ys\bm r&c\bm rc\bm ys\bm p+s\bm rs\bm y&c\bm rc\bm p\end{bmatrix} RYZX=crcp cpsy crspsycysrsrsycrsycycpcrcysp+srsycpsrspcrcp
R Z Y X = [ c r c p c r s p s y − c y s r s r s y + c r c y s p   c p s r c r c y + s r s p s y c y s r s p − c r s y   − s p c p s y c p c y ] \bm R_{ZYX}=\begin{bmatrix}c\bm rc\bm p &c\bm rs\bm ps\bm y-c\bm ys\bm r&s\bm rs\bm y+c\bm rc\bm ys\bm p\\\ c\bm ps\bm r&c\bm rc\bm y+s\bm rs\bm ps\bm y&c\bm ys\bm rs\bm p-c\bm rs\bm y \\\ -s\bm p&c\bm ps\bm y&c\bm pc\bm y\end{bmatrix} RZYX=crcp cpsr spcrspsycysrcrcy+srspsycpsysrsy+crcyspcysrspcrsycpcy
R Z X Y = [ c r c y − s r s p s y − c p s r c r s y + c y s r s p   c y s r + c r s p s y c r c p s r s y − c r c y s p   − c p s y s p c p c y ] \bm R_{ZXY}=\begin{bmatrix}c\bm rc\bm y-s\bm rs\bm ps\bm y &-c\bm ps\bm r&c\bm rs\bm y+c\bm ys\bm rs\bm p\\\ c\bm ys\bm r+c\bm rs\bm ps\bm y&c\bm rc\bm p&s\bm rs\bm y-c\bm rc\bm ys\bm p \\\ -c\bm ps\bm y&s\bm p&c\bm pc\bm y\end{bmatrix} RZXY=crcysrspsy cysr+crspsy cpsycpsrcrcpspcrsy+cysrspsrsycrcyspcpcy
2、四元数
定义一个类似于复数的的代数:四元数(Quaternion),它是紧凑的,也没有奇异性。一个四元数 q \bm q q拥有一个实部和三个虚部,同样的也可以感受一下其使用四元数的魅力,即:
q = q 0 + q 1 i + q 2 j + q 3 k \bm q=q_0+q_1\bm i+q_2\bm j+q_3\bm k q=q0+q1i+q2j+q3k
其中, i 、 j 、 k \bm i 、\bm j、\bm k ijk为三个四元数的虚部,满足以下关系:
{ i 2 = j 2 = k 2 = − 1 i j = k , j i = − k j k = i , k j = − i k i = j , i k = − j \left\{ \begin{array}{lr} \bm i^2=\bm j^2=\bm k^2=-1& \\ \bm i\bm j=\bm k,\bm j\bm i=-\bm k\\ \bm j\bm k=\bm i,\bm k\bm j=-\bm i\\ \bm k\bm i=\bm j,\bm i\bm k=-\bm j& \end{array} \right. i2=j2=k2=1ij=k,ji=kjk=i,kj=iki=j,ik=j
用一个标量和一个向量来表达四元数:
q = [ s , v ] , s = q 0 ∈ R , v = [ q 1 , q 2 , q 3 ] T ∈ R 3 \bm q=[s,\bm v], s=q_0\in{\mathbb R},\bm v={[q_1,q_2,q_3]}^{T}\in{\mathbb R}^{3} q=[s,v],s=q0Rv=[q1,q2,q3]TR3
这里的定义和复数的定义类似, s s s称为实部, v \bm v v称为虚部,如果四元数虚部为0,称之为实四元数,反之如果虚部为0,称之为虚四元数。
该性质是,乘以 i \bm i i,意味着绕 i \bm i i旋转 180 ° 180\degree 180°,对于 k 、 j \bm k、\bm j kj也同样适用。

四元数 ⇔ \bm{\Leftrightarrow} 旋转向量

假设某个旋转是绕单位向量 n = [ n x , n y , n z ] T \bm n=[n_x,n_y,n_z]^T n=[nx,ny,nz]T,进行了角度为 θ \theta θ的旋转,旋转四元数的形式为:
q = [ c o s θ 2 , n x s i n θ 2 , n y s i n θ 2 , n z s i n θ 2 ] T \bm q=[cos\frac{\theta}{2},n_xsin\frac{\theta}{2},n_ysin\frac{\theta}{2},n_zsin\frac{\theta}{2}]^T q=[cos2θ,nxsin2θ,nysin2θ,nzsin2θ]T
同样可以反解出:
{ θ = 2 a r c c o s q 0 [ n x , n y , n z ] T = [ q 1 , q 2 , q 3 ] T / s i n θ 2 \left\{ \begin{array}{lr} \bm \theta=2arccosq_0& \\ [n_x,n_y,n_z]^T=[q_1,q_2,q_3]^T/sin\frac{\theta}{2}& \end{array} \right. {θ=2arccosq0[nx,ny,nz]T=[q1,q2,q3]T/sin2θ

四元数表示旋转

假设一个空间的三维点 p = [ x , y , z ] ∈ R 3 \bm p=[x,y,z]\in{\mathbb R^3} p=[x,y,z]R3,使用四元数来表达为:
p = [ 0 , x , y , z ] = [ 0 , v ] \bm p=[0,x,y,z]=[0,\bm v] p=[0,x,y,z]=[0,v]
同样地,如果使用旋转向量则为 n \bm n n θ \theta θ,根据上面公式的推导则有:
q = [ c o s θ 2 , n s i n θ 2 ] \bm q=[cos\frac{\theta}{2},\bm nsin\frac{\theta}{2}] q=[cos2θ,nsin2θ]
q q q的共轭为:
q ∗ = [ c o s θ 2 , − n s i n θ 2 ] \bm q^*=[cos\frac{\theta}{2},-\bm nsin\frac{\theta}{2}] q=[cos2θ,nsin2θ]
求逆为:

q − 1 = q ∗ ∣ ∣ q ∣ ∣ \bm q^{-1}=\frac{q^*}{||q||} q1=qq
旋转后的点 p ′ p^{'} p即可表示为这样的乘积,具体的推导过程可见Understanding Quaternions 中文翻译《理解四元数》Understanding Quaternions
p ′ = q p q − 1 \bm p'=\bm q\bm p\bm q^{-1} p=qpq1

四元数 ⇔ \bm{\Leftrightarrow} 旋转矩阵

四元数 ⇒ \bm{\Rightarrow} 旋转矩阵
方法一
已知四元数 q = q 0 + q 1 i + q 2 j + q 3 k = [ s , v ] \bm q=q_0+q_1\bm i+q_2\bm j+q _3\bm k=[s,\bm v] q=q0+q1i+q2j+q3k=[s,v],可以利用利用Rodrigues公式可以由四元数求得旋转矩阵 R R R:
R = [ 1 − 2 q 2 2 − 2 q 3 2 2 q 1 q 2 − 2 q 0 q 3 2 q 1 q 3 + 2 q 0 q 2   2 q 1 q 2 + 2 q 0 q 3 1 − 2 q 1 2 − 2 q 3 2 2 q 2 q 3 − 2 q 0 q 1   2 q 1 q 3 − 2 q 0 q 2 s 2 q 2 q 3 + 2 q 0 q 1 1 − 2 q 1 2 − 2 q 2 2 ] \bm R=\begin{bmatrix}1-2q_2^2-2q_3^2&2q_1q_2-2q_0q_3&2q_1q_3+2q_0q_2\\\ 2q_1q_2+2q_0q_3&1-2q_1^2-2q_3^2&2q_2q_3-2q_0q_1\\\ 2q_1q_3-2q_0q2&s2q_2q_3+2q_0q_1&1-2q_1^2-2q_ 2^2\end{bmatrix} R=12q222q32 2q1q2+2q0q3 2q1q32q0q22q1q22q0q312q122q32s2q2q3+2q0q12q1q3+2q0q22q2q32q0q112q122q22
方法二:
R = e ω θ = I + ω × s i n θ + ω × 2 ( 1 − c o s θ ) = I + [ 0 − z y z 0 − x − y x 0 ] s i n θ + [ − y 2 − z 2 x y x z x y − x 2 − z 2 y z x z y z − x 2 − y 2 ] ( 1 − c o s θ ) = [ 1 − z s i n θ y s i n θ z s i n θ 1 − x s i n θ − y s i n θ x s i n θ 1 ] + [ − y 2 − z 2 x y x z x y − x 2 − z 2 y z x z y z − x 2 − y 2 ] ( 1 − c o s θ ) = [ 1 − ( y 2 + z 2 ) ( 1 − c o s θ ) − z s i n θ + x y ( 1 − c o s θ ) y s i n θ + x z ( 1 − c o s θ ) z s i n θ + x y ( 1 − c o s θ ) 1 − ( x 2 + z 2 ) ( 1 − c o s θ ) − x s i n θ + y z ( 1 − c o s θ ) − y s i n θ + x z ( 1 − c o s θ ) x s i n θ + y z ( 1 − c o s θ ) 1 − ( x 2 + y 2 ) ( 1 − c o s θ ) ] = [ c o s θ + x 2 ( 1 − c o s θ ) − z s i n θ + x y ( 1 − c o s θ ) y s i n θ + x z ( 1 − c o s θ ) z s i n θ + x y ( 1 − c o s θ ) c o s θ + y 2 ( 1 − c o s θ ) − x s i n θ + y z ( 1 − c o s θ ) − y s i n θ + x z ( 1 − c o s θ ) x s i n θ + y z ( 1 − c o s θ ) c o s θ + z 2 ( 1 − c o s θ ) ] R = e^{\mathbf{\omega} \theta} =\bm I + \mathbf{\omega}_{\times} sin\theta + \mathbf{\omega}_{\times}^2 (1 - cos\theta) \\ =\bm I + \left[ \begin{matrix} 0 & -z & y\\ z & 0 & -x \\ -y & x & 0 \end{matrix} \right ] sin\theta + \left[ \begin{matrix} -y^2-z^2 & xy & xz\\ xy & -x^2-z^2 & yz \\ xz & yz & -x^2-y^2 \end{matrix} \right ] (1-cos\theta)\\ = \left[ \begin{matrix} 1 & -zsin\theta & ysin\theta\\ zsin\theta & 1 & -xsin\theta \\ -ysin\theta & xsin\theta & 1 \end{matrix} \right ] + \left[ \begin{matrix} -y^2-z^2 & xy & xz\\ xy & -x^2-z^2 & yz \\ xz & yz & -x^2-y^2 \end{matrix} \right ] (1-cos\theta)\\ = \left[ \begin{matrix} 1-(y^2+z^2)(1-cos\theta) & -zsin\theta + xy(1-cos\theta) & ysin\theta + xz(1-cos\theta) \\ zsin\theta + xy(1-cos\theta) & 1 - (x^2+z^2)(1-cos\theta) & -xsin\theta + yz(1-cos\theta) \\ -ysin\theta + xz(1-cos\theta) & xsin\theta + yz(1-cos\theta) & 1-(x^2+y^2)(1-cos\theta) \end{matrix} \right ] \\ = \left[ \begin{matrix} cos\theta+x^2(1-cos\theta) & -zsin\theta + xy(1-cos\theta) & ysin\theta + xz(1-cos\theta) \\ zsin\theta + xy(1-cos\theta) & cos\theta+y^2(1-cos\theta) & -xsin\theta + yz(1-cos\theta) \\ -ysin\theta + xz(1-cos\theta) & xsin\theta + yz(1-cos\theta) & cos\theta+ z^2(1-cos\theta) \end{matrix} \right ] R=eωθ=I+ω×sinθ+ω×2(1cosθ)=I+0zyz0xyx0sinθ+y2z2xyxzxyx2z2yzxzyzx2y2(1cosθ)=1zsinθysinθzsinθ1xsinθysinθxsinθ1+y2z2xyxzxyx2z2yzxzyzx2y2(1cosθ)=1(y2+z2)(1cosθ)zsinθ+xy(1cosθ)ysinθ+xz(1cosθ)zsinθ+xy(1cosθ)1(x2+z2)(1cosθ)xsinθ+yz(1cosθ)ysinθ+xz(1cosθ)xsinθ+yz(1cosθ)1(x2+y2)(1cosθ)=cosθ+x2(1cosθ)zsinθ+xy(1cosθ)ysinθ+xz(1cosθ)zsinθ+xy(1cosθ)cosθ+y2(1cosθ)xsinθ+yz(1cosθ)ysinθ+xz(1cosθ)xsinθ+yz(1cosθ)cosθ+z2(1cosθ)
旋转矩阵 ⇒ \bm{\Rightarrow} 四元数
case1:满足 q 0 ≠ 0 q_0 \neq 0 q0=0, 1 + r 11 + r 22 + r 33 > 0 1+r_{11}+r_{22}+r_{33}>0 1+r11+r22+r33>0,即 1 + t r ( R ) > 0 1+tr(\bm R)>0 1+tr(R)>0
q 0 = 1 + r 11 + r 22 + r 33 2 q_0 = \frac{\sqrt{1+r_{11}+r_{22}+r_{33}}}{2} q0=21+r11+r22+r33
q 1 = r 32 − r 23 4 q 0 q_1 = \frac{r_{32}-r_{23}}{4q_0} q1=4q0r32r23
q 2 = r 13 − r 31 4 q 0 q_2 = \frac{r_{13}-r_{31}}{4q_0} q2=4q0r13r31
q 3 = r 21 − r 12 4 q 0 q_3 = \frac{r_{21}-r_{12}}{4q_0} q3=4q0r21r12
case2:如果 q 0 q_0 q0, t r ( R ) tr(\bm R) tr(R)趋近-1,则求解四元数的过程为:
1.如果 m a x { r 11 , r 22 , r 33 } = r 11 max\{r_{11},r_{22},r_{33}\}=r_{11} max{r11,r22,r33}=r11
t = 1 + r 1 1 − r 22 − r 33 t = \sqrt{1+r_11 - r_{22} - r_{33}} t=1+r11r22r33
q 0 = r 32 − r 23 t q_0 = \frac{r_{32} - r_{23}}{t} q0=tr32r23
q 1 = t / 4 q_1 = t/4 q1=t/4
q 2 = r 13 + r 31 t q_2 = \frac{r_{13} + r_{31}}{t} q2=tr13+r31
q 3 = r 12 + r 21 t q_3 = \frac{r_{12} + r_{21}}{t} q3=tr12+r21
2.如果 m a x { r 11 , r 22 , r 33 } = r 22 max\{r_{11},r_{22},r_{33}\}=r_{22} max{r11,r22,r33}=r22
t = 1 − r 1 1 + r 22 − r 33 t = \sqrt{1 - r_11 + r_{22} - r_{33}} t=1r11+r22r33
q 0 = r 13 − r 31 t q_0 = \frac{r_{13} - r_{31}}{t} q0=tr13r31
q 1 = r 12 + r 21 t q_1 = \frac{r_{12} + r_{21}}{t} q1=tr12+r21
q 2 = t / 4 q_2 = t/4 q2=t/4
q 3 = r 32 + r 23 t q_3 = \frac{r_{32} + r_{23}}{t} q3=tr32+r23
3.如果 m a x { r 11 , r 22 , r 33 } = r 33 max\{r_{11},r_{22},r_{33}\}=r_{33} max{r11,r22,r33}=r33
t = 1 − r 1 1 − r 22 + r 33 t = \sqrt{1 - r_11 - r_{22} + r_{33}} t=1r11r22+r33
q 0 = r 21 − r 12 t q_0 = \frac{r_{21} - r_{12}}{t} q0=tr21r12
q 1 = r 13 + r 31 t q_1 = \frac{r_{13} + r_{31}}{t} q1=tr13+r31
q 2 = r 23 − r 32 t q_2 = \frac{r_{23} - r_{32}}{t} q2=tr23r32
q 3 = t / 4 q_3 = t/4 q3=t/4

四元数 ⇔ \bm{\Leftrightarrow} 欧拉角

欧拉角 ⇒ \bm{\Rightarrow} 四元数
欧拉角到四元数的转换,可以分为两步来推导,从欧拉角到旋转矩阵,再从旋转矩阵到四元数,直接给出结论:
{ q 0 = c o s r 2 c o s p 2 c o s y 2 + s i n r 2 s i n p 2 s i n y 2 q 1 = s i n r 2 c o s p 2 c o s y 2 − c o s r 2 s i n p 2 s i n y 2 q 2 = c o s r 2 s i n p 2 c o s y 2 + s i n r 2 c o s p 2 s i n y 2 q 3 = c o s r 2 c o s p 2 s i n y 2 − s i n r 2 s i n p 2 c o s y 2 \left\{ \begin{array}{lr} q_0=cos\frac{r}{2}cos\frac{p}{2} cos\frac{y}{2}+sin\frac{r}{2}sin\frac{p}{2} sin\frac{y}{2} \\ q_1=sin\frac{r}{2}cos\frac{p}{2} cos\frac{y}{2}-cos\frac{r}{2}sin\frac{p}{2} sin\frac{y}{2} \\ q_2=cos\frac{r}{2}sin\frac{p}{2} cos\frac{y}{2}+sin\frac{r}{2}cos\frac{p}{2} sin\frac{y}{2} \\ q_3=cos\frac{r}{2}cos\frac{p}{2} sin\frac{y}{2}-sin\frac{r}{2}sin\frac{p}{2} cos\frac{y}{2}& \end{array} \right. q0=cos2rcos2pcos2y+sin2rsin2psin2yq1=sin2rcos2pcos2ycos2rsin2psin2yq2=cos2rsin2pcos2y+sin2rcos2psin2yq3=cos2rcos2psin2ysin2rsin2pcos2y
反之:
四元数 ⇒ \bm{\Rightarrow} 欧拉角
{ r = a r c t a n 2 ( q 0 q 1 + q 2 q 3 ) 1 − 2 ( q 1 2 + q 2 2 ) p = a r c s i n 2 ( q 0 q 2 − q 1 q 3 ) y = a r c t a n 2 ( q 0 q 3 + q 1 q 2 ) 1 − 2 ( q 1 2 + q 3 2 ) \left\{ \begin{array}{lr} r=arctan\frac{2(q_0q_1+q_2q_3)}{1-2(q_1^2+q_2^2)} \\ p=arcsin2(q_0q_2-q_1q_3)\\ y=arctan\frac{2(q_0q_3+q_1q_2)}{1-2(q_1^2+q_3^2)} & \end{array} \right. r=arctan12(q12+q22)2(q0q1+q2q3)p=arcsin2(q0q2q1q3)y=arctan12(q12+q32)2(q0q3+q1q2)

参考资料:
旋转矩阵、欧拉角、四元数理论及其转换关系
坐标变换学习笔记—理论篇

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值