Python: RANSAC随机一致性原理与实现
前言
最近要把点云平面做分割,想到可以使用RANSAC做平面拟合。以前经常在图像配准里使用RANSAC做单应性计算,这里记录一下RANSAC的原理以及使用RANSAC拟合平面直线的方法。
随机一致性原理
RANdom SAmple Consensus(RANSAC)随机一致性,用于从被观测的带噪数据中,估计数学模型的参数。
原理:假设一组带有噪声的数据是服从某个数学模型的,其中包含部分不带噪数据(或者噪声很小的数据),称为内点inliers,以及部分噪声大到超出数学模型一定范围的带噪数据,称为外点outliers。通过随机抽取部分观测数据推导模型参数,再将其它数据带入数学模型计算符合程度,重复以上过程直到获得最优结果。
简而言之,RANSAC通过随机选取数据推算数学模型,利用模型与inliers的一致性,反复迭代后选取最符合观测数据的模型参数作为估计结果。
RANSAC直线拟合
借用下图来阐述RANSAC直线拟合的思想:
1.随机选取两个点,计算直线方程
2.所有观测点代入直线方程,筛选距离小于阈值的点作为内点
3.重复以上过程,直到达到预期结果
这个预期结果可以是:达到迭代最大次数时,内点最多的直线;或者内点数超过观测数据的70%时等等。
python代码
随机抽取直线y=2x+3上的点,并附加一个高斯噪声:
y = 2 x + 3 + 2 N ( 0 , 1 ) y=2x+3+2N~(0,1) y=2x+3+