应用
下面展示RANSAC算法在二维数据集中的简单应用,我们尝试适应数据的模型就是一条直线。
代码
代码已放下面,很多地方都已详细的以伪代码的方式展示,供各位参考。
import numpy as np
from sklearn.linear_model import RANSACRegressor # 基于RANSAC算法拟合数据
from sklearn.datasets import make_regression # 生成一个具有回归特征的合成数据集
import matplotlib.pyplot as plt
# 生成含有噪声的数据
X, y = make_regression(n_samples=100, n_features=1, noise=10.0, random_state=0)
# 数据集中包含100个样本、1个特征的回归数据集、噪声水平为10.0,随机种子为0
# 创建RANSACRegressor 对象,并指定基本模型和阈值
ransac = RANSACRegressor(random_state=0)
ransac.fit(X, y) # 将数据拟合成了一条直线
# 获取内点数据索引
inlier_mask = ransac.inlier_mask_ # 获取内点数据的索引
outlier_mask = np.logical_not(inlier_mask) # 获取异常值数据的索引
# 绘制数据点
plt.scatter(X[inlier_mask], y[inlier_mask], color='blue', marker='o', label='Inliers')
plt.scatter(X[outlier_mask], y[outlier_mask], color='red', marker='x', label='Outliers')
# 绘制拟合的直线
line_X = np.arange(X.min(), X.max())[:, np.newaxis]
line_y_ransac = ransac.predict(line_X)
plt.plot(line_X, line_y_ransac, color='black', linewidth=2, label='RANSAC')
plt.xlabel('X')
plt.ylabel('y')
plt.legend(loc='lower right')
plt.show()
结果
运行结果如下图所示:
算法原理及流程参考:RANSAC(随机采样一致性算法)_西依奥肖的博客-CSDN博客
预告
下一篇将出一篇用RANSAC算法拟合曲线的代码及结果演示。