RANSAC(随机采样一致性算法)+ 拟合直线 + Python

应用

下面展示RANSAC算法在二维数据集中的简单应用,我们尝试适应数据的模型就是一条直线。

代码

代码已放下面,很多地方都已详细的以伪代码的方式展示,供各位参考。

import numpy as np
from sklearn.linear_model import RANSACRegressor  # 基于RANSAC算法拟合数据
from sklearn.datasets import make_regression  # 生成一个具有回归特征的合成数据集
import matplotlib.pyplot as plt

# 生成含有噪声的数据
X, y = make_regression(n_samples=100, n_features=1, noise=10.0, random_state=0)
# 数据集中包含100个样本、1个特征的回归数据集、噪声水平为10.0,随机种子为0

# 创建RANSACRegressor 对象,并指定基本模型和阈值
ransac = RANSACRegressor(random_state=0)
ransac.fit(X, y)  # 将数据拟合成了一条直线

# 获取内点数据索引
inlier_mask = ransac.inlier_mask_  # 获取内点数据的索引
outlier_mask = np.logical_not(inlier_mask)  # 获取异常值数据的索引

# 绘制数据点
plt.scatter(X[inlier_mask], y[inlier_mask], color='blue', marker='o', label='Inliers')
plt.scatter(X[outlier_mask], y[outlier_mask], color='red', marker='x', label='Outliers')

# 绘制拟合的直线
line_X = np.arange(X.min(), X.max())[:, np.newaxis]
line_y_ransac = ransac.predict(line_X)
plt.plot(line_X, line_y_ransac, color='black', linewidth=2, label='RANSAC')

plt.xlabel('X')
plt.ylabel('y')
plt.legend(loc='lower right')
plt.show()

结果

运行结果如下图所示:

 算法原理及流程参考:RANSAC(随机采样一致性算法)_西依奥肖的博客-CSDN博客

预告

下一篇将出一篇用RANSAC算法拟合曲线的代码及结果演示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值