模型训练中DP、MP、PP理解
在模型训练中,DP(Data Parallelism)、MP(Model Parallelism)、和 PP(Pipeline Parallelism)是三种常见的并行训练技术,主要用于分布式训练和大模型训练,以解决资源限制和训练效率问题。以下是它们的概念、作用及适用场景:
1. DP(Data Parallelism, 数据并行)
概念
数据并行将整个模型复制到多个设备(通常是 GPU),然后将输入数据划分成小批次(mini-batches),分别分配到各个设备中进行并行计算。各设备独立计算梯度后,进行梯度同步。
流程
- 将数据分成多个小批次(每个设备一份)。
- 每个设备使用完整的模型计算前向和后向传播。
- 通过通信操作(如
allreduce
)聚合各设备上的梯度。 - 同步梯度后更新模型参数。
优点
- 易于实现,支持现成的框架(如 PyTorch 和 TensorFlow)。
- 对数据的分布和通信需求较低。
- 通常是小模型分布式训练的首选。
缺点
- 每个 GPU 需要保存完整的模型副本,受显存限制较大。
- 通信开销随着设备数量增加而增大。
适用场景
- 模型较小,显存能够容纳完整模型。
- 数据量较大,计算密集型任务。
2. MP(Model Parallelism, 模型并行)
概念
模型并行将模型本身划分为不同部分,并分布在多个设备上。这些设备负责不同部分的前向和后向传播。
流程
- 划分模型的不同层或权重到不同设备。
- 训练时,按顺序在不同设备上进行前向传播。
- 反向传播时,各设备按依赖关系计算梯度。
优点
- 可以训练超大模型,突破单个设备显存限制。
- 避免了数据并行中模型的冗余存储。
缺点
- 各设备间需要频繁通信,带来较大开销。
- 对模型的划分需要手动设计,开发复杂。
适用场景
- 模型较大(如 GPT-3 等超大模型),单个 GPU 无法容纳完整的模型。
- 对显存资源要求较高的任务。
3. PP(Pipeline Parallelism, 管道并行)
概念
管道并行是一种特殊的模型并行,将模型按层级划分为不同阶段,每个阶段放在不同设备上。数据以管道方式在各阶段间传递,设备可以并行处理不同 mini-batch 的不同部分。
流程
- 将模型分为若干阶段(例如 3 层、5 层等)。
- 每个阶段分配到一个设备。
- 输入数据划分为多个 mini-batch,按顺序在各阶段间传递。
- 各设备同时处理不同 mini-batch 的前向或后向传播。
优点
- 适合超大模型的分布式训练。
- 利用了设备间的管道并行,提高了资源利用率。
缺点
- 实现复杂,需要仔细设计模型的分割。
- 各阶段设备间通信延迟较大,可能导致管道阻塞。
- 训练的吞吐量受制于最慢阶段。
适用场景
- 模型超大且层数多(如 GPT 系列、BERT 等)。
- 需要充分利用设备资源进行分布式训练。
综合比较
特性 | DP(数据并行) | MP(模型并行) | PP(管道并行) |
---|---|---|---|
复杂度 | 简单 | 中等 | 高 |
通信开销 | 高 | 中 | 中 |
显存利用率 | 高(冗余存储) | 低(分割模型) | 中(部分冗余) |
适用模型大小 | 小到中型 | 大型 | 超大型 |
适用任务 | 数据密集型 | 模型密集型 | 超大模型管道训练 |
实际应用
通常结合使用这三种并行方式:
- DP + MP:在同一设备内使用模型并行,跨设备使用数据并行。
- DP + PP:对超大模型,按层分割模型到不同设备,管道训练,再结合数据并行提升效率。
- DP + MP + PP:LLM(如 GPT-4)的典型训练方式,充分利用分布式计算资源。
框架支持
- PyTorch: 提供
torch.nn.DataParallel
和torch.distributed
支持数据并行和分布式训练。 - DeepSpeed: 专注于优化大模型的并行训练,支持 DP、MP、PP 的组合。
- Megatron-LM: 专为超大模型设计,支持模型并行和管道并行。
- TensorFlow: 提供
tf.distribute
用于分布式训练。