模型训练中数据并行(DP)、模型并行(MP)、管道并行(PP)理解

模型训练中DP、MP、PP理解

在模型训练中,DP(Data Parallelism)、MP(Model Parallelism)、和 PP(Pipeline Parallelism)是三种常见的并行训练技术,主要用于分布式训练和大模型训练,以解决资源限制和训练效率问题。以下是它们的概念、作用及适用场景:


1. DP(Data Parallelism, 数据并行)

概念

数据并行将整个模型复制到多个设备(通常是 GPU),然后将输入数据划分成小批次(mini-batches),分别分配到各个设备中进行并行计算。各设备独立计算梯度后,进行梯度同步。

流程

  1. 将数据分成多个小批次(每个设备一份)。
  2. 每个设备使用完整的模型计算前向和后向传播。
  3. 通过通信操作(如 allreduce)聚合各设备上的梯度。
  4. 同步梯度后更新模型参数。

优点

  • 易于实现,支持现成的框架(如 PyTorch 和 TensorFlow)。
  • 对数据的分布和通信需求较低。
  • 通常是小模型分布式训练的首选。

缺点

  • 每个 GPU 需要保存完整的模型副本,受显存限制较大。
  • 通信开销随着设备数量增加而增大。

适用场景

  • 模型较小,显存能够容纳完整模型。
  • 数据量较大,计算密集型任务。

2. MP(Model Parallelism, 模型并行)

概念

模型并行将模型本身划分为不同部分,并分布在多个设备上。这些设备负责不同部分的前向和后向传播。

流程

  1. 划分模型的不同层或权重到不同设备。
  2. 训练时,按顺序在不同设备上进行前向传播。
  3. 反向传播时,各设备按依赖关系计算梯度。

优点

  • 可以训练超大模型,突破单个设备显存限制。
  • 避免了数据并行中模型的冗余存储。

缺点

  • 各设备间需要频繁通信,带来较大开销。
  • 对模型的划分需要手动设计,开发复杂。

适用场景

  • 模型较大(如 GPT-3 等超大模型),单个 GPU 无法容纳完整的模型。
  • 对显存资源要求较高的任务。

3. PP(Pipeline Parallelism, 管道并行)

概念

管道并行是一种特殊的模型并行,将模型按层级划分为不同阶段,每个阶段放在不同设备上。数据以管道方式在各阶段间传递,设备可以并行处理不同 mini-batch 的不同部分。

流程

  1. 将模型分为若干阶段(例如 3 层、5 层等)。
  2. 每个阶段分配到一个设备。
  3. 输入数据划分为多个 mini-batch,按顺序在各阶段间传递。
  4. 各设备同时处理不同 mini-batch 的前向或后向传播。

优点

  • 适合超大模型的分布式训练。
  • 利用了设备间的管道并行,提高了资源利用率。

缺点

  • 实现复杂,需要仔细设计模型的分割。
  • 各阶段设备间通信延迟较大,可能导致管道阻塞。
  • 训练的吞吐量受制于最慢阶段。

适用场景

  • 模型超大且层数多(如 GPT 系列、BERT 等)。
  • 需要充分利用设备资源进行分布式训练。

综合比较

特性DP(数据并行)MP(模型并行)PP(管道并行)
复杂度简单中等
通信开销
显存利用率高(冗余存储)低(分割模型)中(部分冗余)
适用模型大小小到中型大型超大型
适用任务数据密集型模型密集型超大模型管道训练

实际应用

通常结合使用这三种并行方式:

  • DP + MP:在同一设备内使用模型并行,跨设备使用数据并行。
  • DP + PP:对超大模型,按层分割模型到不同设备,管道训练,再结合数据并行提升效率。
  • DP + MP + PP:LLM(如 GPT-4)的典型训练方式,充分利用分布式计算资源。

框架支持

  • PyTorch: 提供 torch.nn.DataParalleltorch.distributed 支持数据并行和分布式训练。
  • DeepSpeed: 专注于优化大模型的并行训练,支持 DP、MP、PP 的组合。
  • Megatron-LM: 专为超大模型设计,支持模型并行和管道并行。
  • TensorFlow: 提供 tf.distribute 用于分布式训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EEE1even

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值