偏导数(Partial Derivative)

这篇博客介绍了多元变量函数的基础,包括二元和三元函数的等位曲线与曲面,以及二元函数的极限和连续性。重点讲解了偏导数的概念,如何计算对变量x和y的偏导数,并探讨了二阶偏导数。此外,详细阐述了链式法则在不同变量数量情况下的应用,包括隐函数的导数。内容涵盖多元函数微积分的基本概念和重要定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

33.偏导数

33.1 多元变量函数


33.2 二元函数

区域的边界点构成区域的边界。
如果一个区域完全由内部点组成,那么该区域就是开放的。
如果一个区域包含了它所有的边界点,那么它就是封闭的。

33.2.1 二元函数的等位曲线、等高曲线

平面上一个函数 ƒ ( x , y ) ƒ(x, y) ƒ(x,y) 具有一个常数值 ƒ ( x , y ) = c ƒ(x, y) = c ƒ(x,y)=c 的点集称为 ƒ ƒ ƒ等位曲线
空间中所有点 ( x , y ,ƒ ( x , y ) ) (x, y, ƒ(x, y)) (x,yƒ(x,y)) 的集合,对于ƒ定义域中的 ( x , y ) (x, y) (x,y),称为 ƒ ƒ ƒ ƒ ƒ ƒ 的图形也称为曲面 z = ƒ ( x , y ) z = ƒ(x, y) z=ƒ(x,y)

在这里插入图片描述

33.3 三元函数

33.3.1 三元函数的等位曲面

33.4 高维函数中极限与连续性

33.4.1 二元函数的极限

两变量函数极限的性质

求极限的例子:
例1:

例2:

例3:

圆柱的半径取 δ \delta δ z = ϵ z=\epsilon z=ϵ z = − ϵ z=-\epsilon z=ϵ

33.4.2 二元函数的连续性


例子:

( 0 , 0 ) (0,0) (0,0)处的极限值不等于函数值,所以该函数在点 ( 0 , 0 ) (0,0) (0,0)处不连续



极限不存在性的双路检验

例子:


33.5 偏导数

当我们保持一个函数常数中除一个自变量外的所有自变量并对这一个变量求导时,我们得到一个“偏”导数

单一变量函数中对某个变量的微分用符号 “ d d d” 表示
多元变量函数中对某一变量的微分(即偏导)我们用符号 “ ∂ \partial "

33.5.1 二元函数的偏导数

33.5.1.1 函数在某点处对变量 x 进行偏导

函数 f ( x , y ) f(x,y) f(x,y) 在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)对变量 x x x 的偏导数
(变量 x x x、应变量 z z z、常数 y y y

33.5.1.2 函数在某点处对变量 y 进行偏导

函数 f ( x , y ) f(x,y) f(x,y) 在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)对变量 y y y 的偏导数
(变量 y y y、应变量 z z z、常数 x x x


例子:

33.5.2 二阶偏导数


混合偏导定理

33.6 链式法则

33.6.1 一个自变量、一个中间变量的函数的链式法则

33.6.2 一个自变量、两个中间变量的函数的链式法则

33.6.3 一个自变量、三个中间变量的函数的链式法则


33.6.4 两个自变量、三个中间变量的函数的链式法则


33.6.5 隐函数的导数


例子:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值