34.三重积分
34.三重积分
(1)使用三重积分计算三维空间中图形体积
(2)使用三重积分计算三维空间区域中函数的平均值
(3)使用三重积分计算三维空间中的向量场和流体
34.1 空间区域中的体积
34.1.1 对应的计算方法
先对谁( x x x 或 y y y 或 z z z ) 积分,就平行于它对应的轴进行穿线
例1:
先对谁(
x
x
x 或
y
y
y 或
z
z
z ) 积分,就平行于它对应的轴进行穿线
例2:
先对谁(
x
x
x 或
y
y
y 或
z
z
z ) 积分,就平行于它对应的轴进行穿线
积分顺序为
d
z
d
y
d
x
dzdydx
dzdydx
先对谁(
x
x
x 或
y
y
y 或
z
z
z ) 积分,就平行于它对应的轴进行穿线
积分顺序为
d
y
d
z
d
x
dydzdx
dydzdx
例3:
34.1.2 空间中函数的平均值
如果
F
(
x
,
y
,
z
)
=
x
2
+
y
2
+
z
2
F(x,y,z)=\sqrt{x^2+y^2+z^2}
F(x,y,z)=x2+y2+z2,则
F
D
\frac{F}{D}
DF代表空间中积分区域D中某点到原点的平均距离
如果
F
(
x
,
y
,
z
)
F(x,y,z)
F(x,y,z) 是固体在某点
(
x
,
y
,
z
)
(x,y,z)
(x,y,z) 处的温度,则
F
D
\frac{F}{D}
DF代表整个固体的平均温度
34.2 柱面坐标中的三重积分
34.2.1 柱面坐标(一个角度、两个长度)
34.2.2 对应的计算方法
例子:
34.3 球面坐标中的三重积分
34.3.1 球面坐标(两个角度、一个长度)
34.3.2 对应的计算方法
例子: