图解第一类曲面积分与第二类曲面积分的关系
笔记相关内容:
1.曲面积分(Surface Integral)
2.第一类曲面积分:曲面微元dσ与其投影面积微元dxdy之间的关系推导
第一类曲面积分(对曲面微元dS进行积分)(无方向性)
物理意义:
F
(
x
,
y
,
z
)
F(x,y,z)
F(x,y,z)为面密度,dS为曲面微元,在曲面
Σ
\Sigma
Σ上积分得到曲面质量
∬
Σ
F
(
x
,
y
,
z
)
d
S
\iint\limits_{\Sigma}F(x,y,z)dS
Σ∬F(x,y,z)dS
第二类曲面积分(对坐标dydz、dzdx、dxdy进行积分,注意顺序!要满足右手定则)(有方向性)
平面向量场中的通量度量了单位时间内流体通过曲线的量
空间向量场中的通量度量了单位时间内流体通过单位面积的量,通量由流体通过的表面积来度量
向量场
F
(
x
,
y
,
z
)
=
P
(
x
,
y
,
z
)
i
+
Q
(
x
,
y
,
z
)
j
+
R
(
x
,
y
,
z
)
k
\bold{F}(x,y,z)=P(x,y,z)\bold{i}+Q(x,y,z)\bold{j}+R(x,y,z)\bold{k}
F(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k
Σ
\Sigma
Σ是向量场中的一片有向曲面、
n
0
\bold{n}^0
n0是
Σ
\Sigma
Σ上点
(
x
,
y
,
z
)
(x,y,z)
(x,y,z)处的单位法向量
下图引自:遇见数学
下图引自:遇见数学
物理意义:向量场
F
(
x
,
y
,
z
)
\bold{F}(x,y,z)
F(x,y,z)通过曲面
Σ
\Sigma
Σ指定侧的通量
∬
Σ
F
⃗
d
S
⃗
=
∬
Σ
F
⃗
⋅
n
⃗
0
d
S
=
∬
Σ
P
(
x
,
y
,
z
)
d
y
d
z
+
Q
(
x
,
y
,
z
)
d
z
d
x
+
R
(
x
,
y
,
z
)
d
x
d
y
\iint\limits_{\Sigma}\vec{F}d\vec{S}=\iint\limits_{\Sigma}\vec{F}\cdot \vec{n}^0dS=\iint\limits_{\Sigma}P(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy
Σ∬FdS=Σ∬F⋅n0dS=Σ∬P(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy
曲面
Σ
\Sigma
Σ的参数化表达式(详见文章开头第二篇相关内容)
r
(
u
,
v
)
=
f
(
u
,
v
)
i
+
g
(
u
,
v
)
j
+
h
(
u
,
v
)
k
\bold{r}(u,v)=f(u,v)\bold{i}+g(u,v)\bold{j}+h(u,v)\bold{k}
r(u,v)=f(u,v)i+g(u,v)j+h(u,v)k
点
P
P
P处的沿
u
u
u轴和
v
v
v轴的切向量分别是:
r
u
=
∂
r
(
u
,
v
)
∂
u
=
∂
f
(
u
,
v
)
∂
u
i
+
∂
g
(
u
,
v
)
∂
u
j
+
∂
h
(
u
,
v
)
∂
u
k
\bold{r_u}=\frac{\partial \bold{r}(u,v)}{\partial u}=\frac{\partial f(u,v)}{\partial u}\bold{i}+\frac{\partial g(u,v)}{\partial u}\bold{j}+\frac{\partial h(u,v)}{\partial u}\bold{k}
ru=∂u∂r(u,v)=∂u∂f(u,v)i+∂u∂g(u,v)j+∂u∂h(u,v)k
r
v
=
∂
r
(
u
,
v
)
∂
v
=
∂
f
(
u
,
v
)
∂
v
i
+
∂
g
(
u
,
v
)
∂
v
j
+
∂
h
(
u
,
v
)
∂
v
k
\bold{r_v}=\frac{\partial \bold{r}(u,v)}{\partial v}=\frac{\partial f(u,v)}{\partial v}\bold{i}+\frac{\partial g(u,v)}{\partial v}\bold{j}+\frac{\partial h(u,v)}{\partial v}\bold{k}
rv=∂v∂r(u,v)=∂v∂f(u,v)i+∂v∂g(u,v)j+∂v∂h(u,v)k
点
P
P
P处的沿
u
u
u轴和
v
v
v轴的两个切向量叉乘后得到曲面法向量,然后对其单位化
n
⃗
0
=
r
u
×
r
v
∣
r
u
×
r
v
∣
\vec{n}^0=\frac{\bold{r_u}×\bold{r_v}}{|\bold{r_u}×\bold{r_v}|}
n0=∣ru×rv∣ru×rv
曲面微元dS
d
S
=
∣
r
u
×
r
v
∣
d
u
d
v
dS=|\bold{r_u}×\bold{r_v}|dudv
dS=∣ru×rv∣dudv
∬
Σ
F
⃗
d
S
⃗
=
∬
Σ
F
⃗
⋅
n
⃗
0
d
S
=
∬
Σ
F
⃗
⋅
r
u
×
r
v
∣
r
u
×
r
v
∣
⋅
∣
r
u
×
r
v
∣
d
u
d
v
=
∬
Σ
F
⃗
⋅
(
r
u
×
r
v
)
d
u
d
v
\iint\limits_{\Sigma}\vec{F}d\vec{S}=\iint\limits_{\Sigma}\vec{F}\cdot \vec{n}^0dS=\iint\limits_{\Sigma}\vec{F}\cdot\frac{\bold{r_u}×\bold{r_v}}{|\bold{r_u}×\bold{r_v}|}\cdot|\bold{r_u}×\bold{r_v}|dudv=\iint\limits_{\Sigma}\vec{F}\cdot(\bold{r_u}×\bold{r_v})dudv
Σ∬FdS=Σ∬F⋅n0dS=Σ∬F⋅∣ru×rv∣ru×rv⋅∣ru×rv∣dudv=Σ∬F⋅(ru×rv)dudv
第一类曲面积分与第二类曲面积分的关系推导
若我们取
x
=
u
、
y
=
v
、
z
=
f
(
x
,
y
)
x=u、y=v、z=f(x,y)
x=u、y=v、z=f(x,y),其中
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y)是
x
o
y
xoy
xoy平面中区域
R
R
R上的曲面表达式
参数化后曲面的表示式
r
(
u
,
v
)
=
u
i
+
v
j
+
f
(
u
,
v
)
k
\bold{r}(u,v)=u\bold{i}+v\bold{j}+f(u,v)\bold{k}
r(u,v)=ui+vj+f(u,v)k
点P处的沿
u
u
u轴和
v
v
v轴的切向量分别是:
r
u
=
∂
r
(
u
,
v
)
∂
u
=
i
+
f
u
′
(
u
,
v
)
k
\bold{r_u}=\frac{\partial \bold{r}(u,v)}{\partial u}=\bold{i}+f'_u(u,v)\bold{k}
ru=∂u∂r(u,v)=i+fu′(u,v)k
r
v
=
∂
r
(
u
,
v
)
∂
v
=
j
+
f
v
′
(
u
,
v
)
k
\bold{r_v}=\frac{\partial \bold{r}(u,v)}{\partial v}=\bold{j}+f'_v(u,v)\bold{k}
rv=∂v∂r(u,v)=j+fv′(u,v)k
r
u
×
r
v
=
∣
i
j
k
1
0
f
u
′
0
1
f
v
′
∣
=
−
f
u
′
i
−
f
v
′
j
+
k
\bold{r_u}×\bold{r_v}=\left | \begin{matrix} \bold{i}&\bold{j}&\bold{k}\\ 1 & 0 & f'_u \\ 0 & 1 & f'_v \\ \end{matrix} \right | =-f'_u\bold{i}-f'_v\bold{j}+\bold{k}
ru×rv=
i10j01kfu′fv′
=−fu′i−fv′j+k
将参数化后的参数替换为原参
x
=
u
、
y
=
v
x=u、y=v
x=u、y=v
曲面微元dS法向量为:(
−
f
x
′
,
−
f
y
′
,
1
-f'_x,-f'_y,1
−fx′,−fy′,1)
dS向xoy平面投影的投影微元dxdy的法向量:
k
⃗
=
(
0
,
0
,
1
)
\vec{k}=(0,0,1)
k=(0,0,1)
dS向xoz平面投影的投影微元dxdz的法向量:
j
⃗
=
(
0
,
1
,
0
)
\vec{j}=(0,1,0)
j=(0,1,0)
dS向yoz平面投影的投影微元dydz的法向量:
i
⃗
=
(
1
,
0
,
0
)
\vec{i}=(1,0,0)
i=(1,0,0)
曲面微元dS法向量为:(
−
f
x
′
,
−
f
y
′
,
1
-f'_x,-f'_y,1
−fx′,−fy′,1)
dS向xoy平面投影的投影微元dxdy的法向量:
k
⃗
=
(
0
,
0
,
1
)
\vec{k}=(0,0,1)
k=(0,0,1)
曲面微元dS法向量为:(
−
f
x
′
,
−
f
y
′
,
1
-f'_x,-f'_y,1
−fx′,−fy′,1)
dS向xoz平面投影的投影微元dxdz的法向量:
j
⃗
=
(
0
,
1
,
0
)
\vec{j}=(0,1,0)
j=(0,1,0)
曲面微元dS法向量为:(
−
f
x
′
,
−
f
y
′
,
1
-f'_x,-f'_y,1
−fx′,−fy′,1)
dS向yoz平面投影的投影微元dydz的法向量:
i
⃗
=
(
1
,
0
,
0
)
\vec{i}=(1,0,0)
i=(1,0,0)
单位法向量
n
⃗
0
\vec{n}^0
n0与三个坐标轴的夹角
第二类曲面积分与第一类曲面积分的关系
注意:dydz,dzdx,dxdy的顺序,要满足右手定则
d
S
⃗
=
n
⃗
0
d
S
=
(
cos
α
,
cos
β
,
cos
γ
)
d
S
=
(
d
y
d
z
,
d
z
d
x
,
d
x
d
y
)
d\vec{S}=\vec{n}^0dS=(\cos\alpha,\cos\beta,\cos\gamma)dS=(dydz,dzdx,dxdy)
dS=n0dS=(cosα,cosβ,cosγ)dS=(dydz,dzdx,dxdy)
∬
Σ
P
d
y
d
z
+
Q
d
z
d
x
+
R
d
x
d
y
=
∬
Σ
(
P
cos
α
+
Q
cos
β
+
R
cos
γ
)
d
S
\iint\limits_{\Sigma}Pdydz+Qdzdx+Rdxdy=\iint\limits_{\Sigma}(P\cos\alpha+Q\cos\beta+R\cos\gamma)dS
Σ∬Pdydz+Qdzdx+Rdxdy=Σ∬(Pcosα+Qcosβ+Rcosγ)dS