1.图解曲面积分的对称性
1.1 第一类曲面积分的一般对称性
二重积分、三重积分、第一类曲线积分、第一类曲面积分的一般对称性其原理都类似
平面和空间曲面的原理一样,以下内容以空间曲面为例
图中所示为积分区域Σ\SigmaΣ,函数f(x,y,z)f(x,y,z)f(x,y,z)表示点(x,y,z)(x,y,z )(x,y,z)处的密度大小,可以用颜色深浅表示,但画图过于繁琐,所以被积函数并没有进行可视化

积分区域空间曲面Σ\SigmaΣ关于xxx的偶函数(即关于yozyozyoz平面对称)

积分区域空间曲面Σ\SigmaΣ关于yyy的偶函数(即关于xozxozxoz平面对称)

积分区域空间曲面Σ\SigmaΣ关于zzz的偶函数(即关于xoyxoyxoy平面对称)

1.2 第一类曲面积分的轮换对称性
轮换对称性意味着积分区域Σ\SigmaΣ的表达式在x、y、zx、y、zx、y、z互换后形式仍不变,即积分与积分变量无关
例:
设曲面Σ\SigmaΣ:∣x∣+∣y∣+∣z∣=1|x|+|y|+|z|=1∣x∣+∣y∣+∣z∣=1,求∯Σ(x+∣y∣)dS\oiint\limits_{\Sigma}(x+|y|)dSΣ∬(x+∣y∣)dS
曲面Σ\SigmaΣ关于xozxozxoz平面对称,即关于xxx为偶函数,被积函数x+∣y∣x+|y|x+∣y∣关于xxx为奇函数,故∯ΣxdS=0\oiint\limits_{\Sigma}xdS=0Σ∬xdS=0
∯Σ(x+∣y∣)dS=∯Σ∣y∣dS\oiint\limits_{\Sigma}(x+|y|)dS=\oiint\limits_{\Sigma}|y|dSΣ∬(x+∣y∣)dS=Σ∬∣y∣dS
变量x、yx、yx、y互换后表达式为:∣y∣+∣x∣+∣z∣=1|y|+|x|+|z|=1∣y∣+∣x∣+∣z∣=1,表达式不变
变量y、zy、zy、z互换后表达式为:∣x∣+∣z∣+∣y∣=1|x|+|z|+|y|=1∣x∣+∣z∣+∣y∣=1,表达式不变
变量x、zx、zx、z互换后表达式为:∣z∣+∣y∣+∣x∣=1|z|+|y|+|x|=1∣z∣+∣y∣+∣x∣=1,表达式不变
通过验证,积分区域的表达式具有轮换对称性,则将被积函数中yyy替换为xxx和zzz后积分大小不变
∯Σ∣y∣dS=∯Σ∣x∣dS=∯Σ∣z∣dS ∯Σ∣y∣dS=13(∯Σ∣y∣dS+∯Σ∣x∣dS+∯Σ∣z∣dS) ∯Σ∣y∣dS=13(∯Σ∣y∣+∣x∣+∣z∣dS) ∯Σ∣y∣dS=13∯ΣdS=13⋅8⋅34(2)2=433
\oiint\limits_{\Sigma}|y|dS=\oiint\limits_{\Sigma}|x|dS=\oiint\limits_{\Sigma}|z|dS\\
~\\
\oiint\limits_{\Sigma}|y|dS=\frac{1}{3}\big(\oiint\limits_{\Sigma}|y|dS+\oiint\limits_{\Sigma}|x|dS+\oiint\limits_{\Sigma}|z|dS\big)\\
~\\
\oiint\limits_{\Sigma}|y|dS=\frac{1}{3}\big(\oiint\limits_{\Sigma}|y|+|x|+|z|dS\big)\\
~\\
\oiint\limits_{\Sigma}|y|dS=\frac{1}{3}\oiint\limits_{\Sigma}dS=\frac{1}{3}\cdot8\cdot\frac{\sqrt{3}}{4}(\sqrt{2})^2=\frac{4\sqrt{3}}{3}
Σ∬∣y∣dS=Σ∬∣x∣dS=Σ∬∣z∣dS Σ∬∣y∣dS=31(Σ∬∣y∣dS+Σ∬∣x∣dS+Σ∬∣z∣dS) Σ∬∣y∣dS=31(Σ∬∣y∣+∣x∣+∣z∣dS) Σ∬∣y∣dS=31Σ∬dS=31⋅8⋅43(2)2=343
下图为曲面Σ\SigmaΣ(由8个边长2\sqrt{2}2的正三角形组成),∯ΣdS\oiint\limits_{\Sigma}dSΣ∬dS表示该曲面面积

1.3 第二类曲面积分的一般对称性
两点(x,−y,z)、(x,y,z)(x,-y,z)、(x,y,z)(x,−y,z)、(x,y,z)处的位移dydydy同向,y方向的力Q(x,−y,z)、Q(x,y,z)Q(x,-y,z)、Q(x,y,z)Q(x,−y,z)、Q(x,y,z)若相等,则意味着向量场在两点处的yyy方向一个流入,一个流出(人为规定流出为+,流入为-),通量为0
下图来自张宇考研数学

两点(x,−y,z)、(x,y,z)(x,-y,z)、(x,y,z)(x,−y,z)、(x,y,z)处的位移dydydy反向,y方向的力Q(x,−y,z)、Q(x,y,z)Q(x,-y,z)、Q(x,y,z)Q(x,−y,z)、Q(x,y,z)若相反,则意味着向量场在两点处的yyy方向均流出(人为规定流出为+,流入为-),通量倍2
下图来自张宇考研数学

积分区域空间曲面Σ\SigmaΣ关于xxx的偶函数(即关于yozyozyoz平面对称)
为突出向量分解后的各个方向,避免与曲面产生混乱,下图中并未画出曲面Σ\SigmaΣ







积分区域空间曲面Σ\SigmaΣ关于yyy的偶函数(即关于xozxozxoz平面对称)
为突出向量分解后的各个方向,避免与曲面产生混乱,下图中并未画出曲面Σ\SigmaΣ
原理与上述类似,不再进行作图

积分区域空间曲面Σ\SigmaΣ关于zzz的偶函数(即关于xoyxoyxoy平面对称)
为突出向量分解后的各个方向,避免与曲面产生混乱,下图中并未画出曲面Σ\SigmaΣ
原理与上述类似,不再进行作图

8179





