因为t检验本质上是一种参数检验,是均值的比较。当我们进行t检验进行假设检验时都会使用以下假设:H0:两组之间的均值相等 ;H1:两组之间的均值不等 。t检验其实仅仅是对两组之间的均值进行了比较,但是为啥呢,正态分布不是有俩参数嘛——均值、标准差,为啥比一个均数就能说两样本代表的总体之间是否存在差异呢?我们发现t检验的前提条件除了要求数据来自正态分布总体外,还要求两样本总体方差相等,即具有方差齐性。举个栗子,看图说话:如果不要求满足正态分布,那么如下图,正态分布和指数分布比,比均数比个锤子,均数没有差异也没有任何意义,两总体之间肯定存在差异。再举个栗子,如果不要求方差齐,仅仅均值没差异也是没有意义的,你能说这两组没差异吗。
我们可以发现,t检验的前提要求,限制了总体的其他参数,只剩下了均值来决定总体的分布,因此t检验时2个样本均值的比较才有意义。
t检验然而,这不是说我们所比较的总体必须要是正态分布,因为我们所比较的是平均值。不论从那种分布抽取的样本所得的平均值,只要样本数量越多(n>50),平均值的分布都会越倾向为正态的,这就是所谓的中心极限定理。所以,我们要搞清楚的是,要满足正态分布的,不是总体的分布,而是平均值的分布。我们的六西格玛绿带课程中,有一些制作得很生动的动画,会解释得更清楚。
作者:五弦三品
链接:https://www.zhihu.com/question/397871872/answer/1250967307
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。