三维重建(SFM)与实时定位建图(SLAM)的区分与联系

本文探讨了SLAM(同时定位与建图)和SFM(结构从运动)这两种在自主机器人和计算机视觉领域的关键技术。SLAM强调实时性和轻量化,用于定位;SFM追求高精度,适用于大规模场景重建。两者共享多视角几何基础,但SFM更注重精度和后处理优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、SLAM

        SLAM是Simultaneous Location and Mapping,同时定位与地图构建。是指搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环境的模型,同时估计自己的运动。目的是解决自主机器人“定位”和“建图”两个问题。同时要求能够实时地,没有先验知识地进行。SLAM问题的本质是对主体自身(位姿)和周围环境空间(点云)的不确定性的估计。

2、SFM

        Structure from Motion(SFM)是一个估计相机参数及三维点位置的问题。一个基本的SFM pipeline可以描述为:对每张2维图片检测特征点(feature point),对每对图片中的特征点进行匹配,只保留满足几何约束的匹配,最后执行一个迭代式的、鲁棒的SFM方法来恢复摄像机的内参(intrinsic parameter)和外参(extrinsic parameter)。并由三角化得到三维点坐标,然后使用Bundle Adjustment进行优化。

        根据SfM过程中图像添加顺序的拓扑结构,SFM方法可以分为增量式(incremental/sequential SFM),全局式(global SFM),混合式(hybrid SFM),层次式(hierarchica SFM)。另外有基于语义的SFM(Semantic SFM)和基于Deep learning的SFM。

3、区别

  1. SLAM要求实时,数据是线性有序的,无法一次获得所有图像,部分SLAM算法会丢失过去的部分信息;基于图像的SFM不要求实时
SFM(Structure from Motion)SLAM(Simultaneous Localization and Mapping)是计算机视觉机器人领域中的两个重要研究方向。 深入SFM,首先要了解其基本概念。SFM是一种从像序列中重三维场景的方法。它通过分析像中物体摄像机的运动来推导出场景的结构摄像机的轨迹。在SFM中,我们使用了特征点匹配、三维点云重等技术来实现场景的重。此外,SFM还可以用于姿态估计、虚拟现实等领域。 在学习SFM时,我们需要掌握深度学习技术计算机视觉基础知识。了解深度神经网络、卷积神经网络、循环神经网络等深度学习模型对于理解SFM中的特征点检测、匹配姿态估计等步骤非常重要。同时,了解摄像机成像原理、特征描述子、三维点云重算法等知识也是必不可少的。 深入SLAM,首先需要了解其基本概念。SLAM是一种同时定位的技术,用于机器人或自主系统实时立环境的地并同时估计自身的位置。SLAM主要关注于解决机器人在未知环境中自主导航的问题。SLAM算法通常包括前端后端两个模块。前端负责对环境进行感知,通过传感器(如激光雷达、摄像头等)获取数据。而后端负责估计机器人的轨迹。 学习SLAM时,我们需要掌握激光雷达、摄像头等传感器的工作原理以及数据处理方法。此外,了解滤波器理论、优化算法(如最小二乘法、非线性优化等)也是必要的。同时,学习SLAM框架(如ORB-SLAM、LSD-SLAM等)的实现原理代码实现可以帮助我们更好地理解SLAM算法。 总结而言,深入SFMSLAM需要掌握深度学习、计算机视觉机器人相关的知识。通过学习基本概念、核心算法实际应用,我们可以更好地理解应用SFMSLAM技术。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值