“鲁棒"这个词来源于英文"robust”,意为健壮的、强健的、坚韧的。
在计算机科学、工程、统计学、机器学习等领域中,“鲁棒性”(Robustness)通常指的是一个系统、算法、模型或方法在面对异常数据、噪声、错误、参数变化、恶意攻击等情况时仍能保持正常工作或仅有轻微性能下降的能力。
简而言之,鲁棒性强意味着系统或算法对环境变化或外界干扰不敏感,能够稳定可靠地运行。
在多视图机器学习的上下文中,鲁棒性意味着算法能够在不同视图质量参差不齐、信息冗余甚至冲突的情况下,仍然能够准确地完成分类或聚类任务,确保整体性能不会受到太大影响。
例如,鲁棒的多核k-means算法(RMKKM)通过将损失函数的平方和替换为范数项,增强了对异常值的抵抗能力,从而提升了聚类效果的稳定性。
同样,鲁棒的特征学习和样本自适应方法能够更好地处理数据中的噪声和不确定性,使得模型在实际应用中表现更加强大。