单射与满射|定义|判定方法

只要有函数,只要有映射关系,单射(Injective)和满射(Surjective)就是个绕不过去的坎。下面是对它们的定义和判定方法的总结。

单射(Injective)

定义:一个函数 f : A → B f: A \rightarrow B f:AB 被称为单射,如果对于每一对不同的元素 a 1 , a 2 ∈ A a_1, a_2 \in A a1,a2A,它们在函数 f f f 下的像也是不同的,即 f ( a 1 ) ≠ f ( a 2 ) f(a_1) \neq f(a_2) f(a1)=f(a2)

判定方法

  1. 代数方法:给定一个函数表达式,证明如果 f ( a 1 ) = f ( a 2 ) f(a_1) = f(a_2) f(a1)=f(a2),则 a 1 = a 2 a_1 = a_2 a1=a2
  2. 图像法:如果函数的图像可以画出,检查任意两条垂直于 B B B 轴的线是否最多只与图像相交一次。

满射(Surjective)

定义:一个函数 f : A → B f: A \rightarrow B f:AB 被称为满射,如果对于 B B B 中的每一个元素 b b b,都存在至少一个元素 a ∈ A a \in A aA 使得 f ( a ) = b f(a) = b f(a)=b

判定方法

  1. 代数方法:给定一个函数表达式,证明对于任意的 b ∈ B b \in B bB,都可以找到一个 a ∈ A a \in A aA 使得 f ( a ) = b f(a) = b f(a)=b
  2. 图像法:如果函数的图像可以画出,检查图像是否覆盖了整个 B B B 轴。

例子

  • 函数 f ( x ) = 2 x f(x) = 2x f(x)=2x R \mathbb{R} R R \mathbb{R} R 是单射:因为如果 2 x 1 = 2 x 2 2x_1 = 2x_2 2x1=2x2,则 x 1 = x 2 x_1 = x_2 x1=x2
  • 函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2 R \mathbb{R} R R \mathbb{R} R 不是单射:因为存在不同的 x 1 x_1 x1 x 2 x_2 x2(例如 x 1 = 1 x_1 = 1 x1=1 x 2 = − 1 x_2 = -1 x2=1)使得 f ( x 1 ) = f ( x 2 ) f(x_1) = f(x_2) f(x1)=f(x2)
  • 函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2 R \mathbb{R} R R \mathbb{R} R不是满射:因为不存在 x ∈ R x \in \mathbb{R} xR使得 x 2 = − 1 x^2 = -1 x2=1(负数没有实数平方根)。

以上,单射和满射是关于函数如何映射元素的两个不同方面。单射关注的是输入的唯一性,而满射关注的是输出的完备性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值