只要有函数,只要有映射关系,单射(Injective)和满射(Surjective)就是个绕不过去的坎。下面是对它们的定义和判定方法的总结。
单射(Injective)
定义:一个函数 f : A → B f: A \rightarrow B f:A→B 被称为单射,如果对于每一对不同的元素 a 1 , a 2 ∈ A a_1, a_2 \in A a1,a2∈A,它们在函数 f f f 下的像也是不同的,即 f ( a 1 ) ≠ f ( a 2 ) f(a_1) \neq f(a_2) f(a1)=f(a2)。
判定方法:
- 代数方法:给定一个函数表达式,证明如果 f ( a 1 ) = f ( a 2 ) f(a_1) = f(a_2) f(a1)=f(a2),则 a 1 = a 2 a_1 = a_2 a1=a2。
- 图像法:如果函数的图像可以画出,检查任意两条垂直于 B B B 轴的线是否最多只与图像相交一次。
满射(Surjective)
定义:一个函数 f : A → B f: A \rightarrow B f:A→B 被称为满射,如果对于 B B B 中的每一个元素 b b b,都存在至少一个元素 a ∈ A a \in A a∈A 使得 f ( a ) = b f(a) = b f(a)=b。
判定方法:
- 代数方法:给定一个函数表达式,证明对于任意的 b ∈ B b \in B b∈B,都可以找到一个 a ∈ A a \in A a∈A 使得 f ( a ) = b f(a) = b f(a)=b。
- 图像法:如果函数的图像可以画出,检查图像是否覆盖了整个 B B B 轴。
例子
- 函数 f ( x ) = 2 x f(x) = 2x f(x)=2x 从 R \mathbb{R} R 到 R \mathbb{R} R 是单射:因为如果 2 x 1 = 2 x 2 2x_1 = 2x_2 2x1=2x2,则 x 1 = x 2 x_1 = x_2 x1=x2。
- 函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2 从 R \mathbb{R} R 到 R \mathbb{R} R 不是单射:因为存在不同的 x 1 x_1 x1 和 x 2 x_2 x2(例如 x 1 = 1 x_1 = 1 x1=1 和 x 2 = − 1 x_2 = -1 x2=−1)使得 f ( x 1 ) = f ( x 2 ) f(x_1) = f(x_2) f(x1)=f(x2)。
- 函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2 从 R \mathbb{R} R 到 R \mathbb{R} R不是满射:因为不存在 x ∈ R x \in \mathbb{R} x∈R使得 x 2 = − 1 x^2 = -1 x2=−1(负数没有实数平方根)。
以上,单射和满射是关于函数如何映射元素的两个不同方面。单射关注的是输入的唯一性,而满射关注的是输出的完备性。