DePT: Decoupled Prompt Tuning

当前的问题:Base-New Tradeoff(BNT)困境

现有的提示调优方法通常无法摆脱Base-New Tradeoff(BNT)困境,即调优/调整的模型对基本任务的泛化效果越好,对新任务的泛化效果就越差(包含不可见的类),反之新任务的泛化效果越好,所需要的代价便是基本任务的泛化效果越差。
作者最终达到的结果便是:Base和New的准确率上同时得到提升
image.png

什么原因导致了Base-New Tradeoff(BNT)

Base和New联合训练Oracle

为了训练一个近乎BNT问题的模型,作者使用base task τ b a s e \tau_{base} τbase和new task τ n e w \tau_{new} τnew来联合派生模型Oracle。按我理解,应该是Oracle这个模型利用上了base和new上的数据,所以自然而然地不存在上述的Base-New Tradeoff(BNT)问题。

通道重要性(CI)的计算

r ( r = 1 , … , d ) r(r=1,\ldots,d) r(r=1,,d)个通道重要性计算如下:
image.png
其中 f j , e ∗ f_j,e_* fj,e分别为 x j x_j xj学习到的 d d d维图像和文本特征。 N N N为任务中的示例数。ReLU[1]用于避免分母等于0。

将Oracle与CoOp进行比较

image.png
在(a)©中, x x x轴是对分别base task τ b a s e \tau_{base} τbase和new task τ n e w \tau_{new} τnew根据通道重要性(CI)进行排序后的索引( x x x越小,CI得分越低, x x x越大,CI得分越高), y y y轴即为通道重要性(CI)大小。从图中可以看出,oracle模型得到的base task和new task的CI分布比CoOp模型得到的CI分布具有更大的一致性
在(a)©中,oracle的准确率确实比CoOp高。

提出的idea

oracle模型在很大程度上优于CoOp,这表明oracle模型产生的大多数特征通道包含任务共享知识,这对新任务的泛化很有价值。简而言之,在提示调优之后,绝大多数学习到的特征通道被特定于基础的知识所占据,导致对新任务很重要的任务共享知识的崩溃(或灾难性遗忘)——我们在本工作中将其称为通道偏差问题。
我们能否在特征通道中同时保留特定于base-task共享的知识,以克服提示调优中的BNT问题?
image.png
个人理解:既然BNT问题与CI分布紧密相关,那么我们接下来的改进可以围绕着特征通道这一角度着手。

解决办法

image.png
解决办法非常简单,仅仅只是加了一个即插即用(Plug-and-Play)的CAT Head。

CAT Head

对于Image Encoder和Text Encoder的输出 S i m g = { f j } j = 1 J , S t e x t = { e j } j = 1 J S_{img}=\{\bm f_j\}^J_{j=1},S_{text}=\{e_j\}_{j=1}^J Simg={fj}j=1J,Stext={ej}j=1J,CAT Head利用通道转换层(cwT)将Simg和Stext转换为新的特征空间,即
image.png
类似地,得到 S i m g ′ = { f j ′ } j = 1 J , S t e x t ′ = { e j ′ } j = 1 J S'_{img}=\{\bm f'_j\}^J_{j=1},S'_{text}=\{e'_j\}_{j=1}^J Simg={fj}j=1J,Stext={ej}j=1J
再将 S i m g ′ , S t e x t ′ S'_{img},S'_{text} Simg,Stext拼接在一起,即 S ∪ = S i m g ′ ∪ S t e x t ′ = { s j } j = 1 2 J , Y ∪ = { y j } j = 1 2 J S_{\cup}=S'_{img}\cup S'_{text}=\{s_j\}^{2J}_{j=1}, \mathcal{Y}_ {\cup}=\{\bm y_j\}^{2J}_{j=1} S=SimgStext={sj}j=12J,Y={yj}j=12J
其中 y j ∈ R M \bm y_j\in \mathbb{R}^M yjRM s j s_j sj的on-hot标签。
对于每一对 ( s , y ) (s, \bm y) (s,y), CAT头最小化以下交叉熵损失:
L CAT = − ∑ i y i log P CAT ( c i ∣ x ) \mathcal{L}_{\text{CAT}}= -\sum_{i}{\bm y_i \text{log}\mathcal{P}_{\text{CAT}}(\bm c_i|\bm x)} LCAT=iyilogPCAT(cix)
其中
image.png

总损失与推理

总损失如下:
image.png
Base与New上的推理
image.png
对于基本任务,我们的CAT头直接将测试样例的图像特征作为输入,使用线性分类器预测分布内类标签。
image.png
在推理时,使用标准ITM头来实现对原始特征空间中新任务的zero-shot泛化/预测。

参考资料

论文下载(2024 CVPR)

https://arxiv.org/abs/2309.07439
image.png

代码地址

https://github.com/Koorye/DePT

  • 11
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十有久诚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值