最优化方法——Orthogonal Matrices


8.1 正交单位向量

  • 如果一个向量集合 a 1 , a 2 , . . . , a n ∈ R m a_1,a_2,...,a_n\in R^m a1,a2,...,anRm满足:
    • 向量有单位范数: ∣ ∣ a i ∣ ∣ = 1 ||a_i||=1 ai=1
    • 向量之间相互正交:如果 i ≠ j i≠j i=j,有 a i T a j = 0 a_i^Ta_j=0 aiTaj=0
      则称这些向量是标准正交的。
  • 例子:
    在这里插入图片描述

8.2 标准正交矩阵

  • 如果A的Gram矩阵为单位矩阵,则 A ∈ R m × n A\in R^{m×n} ARm×n具有标准正交列
    在这里插入图片描述

8.3 矩阵-向量乘积

  • 如果 A ∈ R m × n A\in R^{m×n} ARm×n具有标准正交列,则线性函数 f ( x ) = A x f(x)=Ax f(x)=Ax
    • 保持原内积
    • 保持原范数
    • 保持原距离
    • 保持原角度

8.4 左可逆性

  • 如果矩阵 A ∈ R m × n A\in R^{m×n} ARm×n有标准正交列,则:
    • A是左可逆的,其左逆 A T A^T AT,根据定义: A T A = I A^T A=I ATA=I
    • A有线性无关的列向量
    • A是高的或者方的<维度定理>

8.5 正交矩阵

  • 定义:所有列凉凉相互正交的方形实矩阵称为正交矩阵
  • 正交矩阵满足非奇异性,即如果矩阵A是正交的,则:
    在这里插入图片描述
    <注意:如果 A ∈ R m × n A\in R^{m×n} ARm×n有标准正交列以及 m > n m>n m>n,则 A A T ≠ I AA^T≠I AAT=I>

8.6 置换矩阵

  • Font metrics not found for font: . ( 1 , 2 , … , 𝑛 ) (1,2,…,𝑛) (1,2,,n)的一个重新排序的排列。
  • 将𝜋与一个置换矩阵 A ∈ R 𝑛 × 𝑛 A∈ℝ^{𝑛×𝑛} ARn×n联系起来:
    在这里插入图片描述
  • 𝐴𝑥是𝑥的一个置换:Font metrics not found for font: .
  • A在每一行和每一列中都有一个等于1的元素。
  • 置换矩阵满足正交性,即所有置换矩阵都是正交的:
    • 𝐴 𝑇 𝐴 = 𝐼 𝐴^𝑇 𝐴=𝐼 ATA=I,因为A的每一行有一个元素等于1:
      在这里插入图片描述
    • A T = A − 1 A^T=A^{-1} AT=A1是逆置换矩阵

【例子】
在这里插入图片描述

8.7 平面旋转

  • 在一个平面的旋转可以用矩阵表示为:
    在这里插入图片描述
    在这里插入图片描述
  • R n R^n Rn的坐标平面上旋转,例如:
    在这里插入图片描述
    描述了在 R 3 R^3 R3 ( x 1 , x 3 ) (x_1,x_3) (x1,x3)平面的旋转。

8.8 反射算子

  • 反射算子(reflector):一个矩阵的形式为:
    A = I − 2 a a T A=I-2aa^T A=I2aaT
    其中,向量a满足 ∣ ∣ a ∣ ∣ 2 = 1 ||a||_2=1 a2=1
  • 性质:
    • 反射矩阵(reflector matrix)是对称的 A T = A A^T=A AT=A
    • 反射矩阵(reflector matrix)是正交的
      在这里插入图片描述

8.8.1 反射算子的几何解释

在这里插入图片描述
在这里插入图片描述

8.8.2 练习

在这里插入图片描述

8.9 正交矩阵的乘积

  • A 1 , . . . , A k ∈ R n × n A_1,...,A_k\in R^{n×n} A1,...,AkRn×n是正交矩阵,那么它们的乘积为:
    A = A 1 A 2 . . . A k A=A_1A_2...A_k A=A1A2...Ak
    正交性:
    在这里插入图片描述

8.10 具有正交矩阵的线性方程

  • 系数正交矩阵 A ∈ R n × n A\in R^{n×n} ARn×n的线性方程:
    A x = b Ax=b Ax=b
    的解为:
    x = A − 1 b = A T b x=A^{-1}b=A^Tb x=A1b=ATb
  • 可以在 2 n 2 2n^2 2n2个flop内计算矩阵向量乘法。
  • 如果A有特殊性子和,代价将会小于 n 2 n^2 n2。例如:
    • 置换矩阵:0 flop
    • 反射算子(给定a):4n flops
    • 平面旋转:O(1) flop

8.11 标准列正交的高矩阵

  • 假设矩阵 A ∈ R m × n A\in R^{m×n} ARm×n是高的(m>n),具有标准正交列,则有:
    A T A^T AT具有标准正交行
  • A T A^T AT是A的一个左逆
    A T A = I A^TA=I ATA=I
  • A没有右逆,因为:
    A A T ≠ I AA^T≠I AAT=I

8.12 值域范围

  • 一个向量集合张成的空间是其所有线性组合的集合:
    在这里插入图片描述
  • 矩阵 A ∈ R m × n A\in R^{m×n} ARm×n的范围为其列向量张成的空间:
    在这里插入图片描述
  • 例子:
    在这里插入图片描述

8.13 值域投影

在这里插入图片描述

8.13.1 验证

在这里插入图片描述

8.14 Gram矩阵

  • 如果 𝐴 ∈ C ( 𝑚 × 𝑛 ) 𝐴∈ℂ^(𝑚×𝑛) AC(m×n)的Gram矩阵为单位矩阵,则𝐴具有正交列:
    在这里插入图片描述
  • 列有单位范数: ‖ 𝑎 𝑖 ‖ 2 2 = 𝑎 𝑖 𝐻 𝑎 𝑖 = 1 ‖𝑎_𝑖 ‖_2^2=𝑎_𝑖^𝐻 𝑎_𝑖=1 ai22=aiHai=1
  • 列是相互正交的:对于 𝑖 ≠ 𝑗 𝑖≠𝑗 i=j 𝑎 𝑖 𝐻 𝑎 𝑗 = 0 𝑎_𝑖^𝐻 𝑎_𝑗=0 aiHaj=0

8.15 Unitary矩阵

  • 定义:列正交的方形复数矩阵称为酉矩阵
  • 酉矩阵的逆:
    在这里插入图片描述
  • 酉矩阵是具有逆 A H A^H AH的非奇异矩阵
  • 如果A是酉矩阵,那么 A H A^H AH也是酉矩阵
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值