L1 神经网络和深度学习 Week3(吴恩达)

1. 单层的Logistic回归

引用吴恩达老师课上的图(3.10)
Logistic
算法的数学表达式

对于一个样本 x ( i ) x^{(i)} x(i)
z ( i ) = w T x ( i ) + b (1) z^{(i)} = w^T x^{(i)} + b \tag{1} z(i)=wTx(i)+b(1)
y ^ ( i ) = a ( i ) = s i g m o i d ( z ( i ) ) (2) \hat{y}^{(i)} = a^{(i)} = sigmoid(z^{(i)})\tag{2} y^(i)=a(i)=sigmoid(z(i))(2)
L ( a ( i ) , y ( i ) ) = − y ( i ) log ⁡ ( a ( i ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − a ( i ) ) (3) \mathcal{L}(a^{(i)}, y^{(i)}) = - y^{(i)} \log(a^{(i)}) - (1-y^{(i)} ) \log(1-a^{(i)})\tag{3} L(a(i),y(i))=y(i)log(a(i))(1y(i))log(1a(i))(3)

然后通过对所有训练样本求和来计算成本:
J = 1 m ∑ i = 1 m L ( a ( i ) , y ( i ) ) (6) J = \frac{1}{m} \sum_{i=1}^m \mathcal{L}(a^{(i)}, y^{(i)})\tag{6} J=m1i=1mL(a(i),y(i))(6)

以下都为多个样本,上述为单个样本的算法表达式

  • 正向传播
    • 输入数据 X
    • 计算 A = σ ( w T X + b ) = ( a ( 0 ) , a ( 1 ) , . . . , a ( m − 1 ) , a ( m ) ) A = \sigma(w^T X + b) = (a^{(0)}, a^{(1)}, ..., a^{(m-1)}, a^{(m)}) A=σ(wTX+b)=(a(0),a(1),...,a(m1),a(m))
    • 计算成本函数: J = − 1 m ∑ i = 1 m y ( i ) log ⁡ ( a ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a ( i ) ) J = -\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log(a^{(i)})+(1-y^{(i)})\log(1-a^{(i)}) J=m1i=1my(i)log(a(i))+(1y(i))log(1a(i))
  • 反向传播,计算梯度
    ∂ J ∂ w = 1 m X ( A − Y ) T (7) \frac{\partial J}{\partial w} = \frac{1}{m}X(A-Y)^T\tag{7} wJ=m1X(AY)T(7)
    ∂ J ∂ b = 1 m ∑ i = 1 m ( a ( i ) − y ( i ) ) (8) \frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^m (a^{(i)}-y^{(i)})\tag{8} bJ=m1i=1m(a(i)y(i))(8)
  • 通过最小化成本函数 J J J 来学习 w w w b b b。对于参数 θ \theta θ,更新规则为 θ = θ − α   d θ \theta = \theta - \alpha \text{ } d\theta θ=θα dθ,其中 α \alpha α 是学习率。

2. 两层的Logistic神经网络(加上输入层是三层)

在这里插入图片描述
在这里插入图片描述

对于一个样本 x ( i ) x^{(i)} x(i):

z [ 1 ] ( i ) = W [ 1 ] x ( i ) + b [ 1 ] ( i ) (8) z^{[1] (i)} = W^{[1]} x^{(i)} + b^{[1] (i)} \tag{8} z[1](i)=W[1]x(i)+b[1](i)(8)

a [ 1 ] ( i ) = tanh ⁡ ( z [ 1 ] ( i ) ) (9) a^{[1] (i)} = \tanh(z^{[1] (i)}) \tag{9} a[1](i)=tanh(z[1](i))(9)

z [ 2 ] ( i ) = W [ 2 ] a [ 1 ] ( i ) + b [ 2 ] ( i ) (10) z^{[2] (i)} = W^{[2]} a^{[1] (i)} + b^{[2] (i)} \tag{10} z[2](i)=W[2]a[1](i)+b[2](i)(10)

y ^ ( i ) = a [ 2 ] ( i ) = σ ( z [ 2 ] ( i ) ) (11) \hat{y}^{(i)} = a^{[2] (i)} = \sigma(z^{[2] (i)}) \tag{11} y^(i)=a[2](i)=σ(z[2](i))(11)

y prediction ( i ) = { 1 if  a [ 2 ] ( i ) > 0.5 0 otherwise (12) y^{(i)}_{\text{prediction}} = \begin{cases} 1 & \text{if } a^{[2](i)} > 0.5 \\ 0 & \text{otherwise} \end{cases} \tag{12} yprediction(i)={10if a[2](i)>0.5otherwise(12)

给定所有样本的预测值,你也可以计算代价 J J J 如下:

J = − 1 m ∑ i = 0 m ( y ( i ) log ⁡ ( a [ 2 ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ 2 ] ( i ) ) ) (13) J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \left( y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \right) \tag{13} J=m1i=0m(y(i)log(a[2](i))+(1y(i))log(1a[2](i)))(13)
对于多个样本
在这里插入图片描述

2.1 定义神经网络结构

  • n_x: the size of the input layer
  • n_h: the size of the hidden layer (set this to 4)
  • n_y: the size of the output layer

函数名称:layer_sizes
参数:

参数描述形状
X输入数据集(输入层大小, 样本数)
Y标签(输出层大小, 样本数)

返回值

变量描述
n_x输入层的大小
n_h隐藏层的大小
n_y输出层的大小
def layer_sizes(X, Y):
    # size of input layer
    n_x = X.shape[0]
    n_h = 4
    n_y = Y.shape[0]
    # size of output layer
    return (n_x, n_h, n_y)

2.2 初始化模型参数(随机初始化)

函数名称:initialize_parameters
参数

参数描述形状
n_x输入层的大小-
n_h隐藏层的大小-
n_y输出层的大小-

返回值

变量描述形状
params包含参数的 Python 字典-
W1第一层权重矩阵(n_h, n_x)
b1第一层偏置向量(n_h, 1)
W2第二层权重矩阵(n_y, n_h)
b2第二层偏置向量(n_y, 1)
def initialize_parameters(n_x, n_h, n_y):

    np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.
    
    W1 = np.random.randn(n_h,n_x) * 0.01
    b1 = np.zeros((n_h,1))
    W2 = np.random.randn(n_y,n_h) * 0.01
    b2 = np.zeros((n_y,1))
    
    assert (W1.shape == (n_h, n_x))
    assert (b1.shape == (n_h, 1))
    assert (W2.shape == (n_y, n_h))
    assert (b2.shape == (n_y, 1))
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters

2.3 优化器

2.3.1 前向传播

函数名称:forward_propagation
参数

参数描述形状
X输入数据(n_x, m)
parameters包含参数的 Python 字典-

返回值

变量描述形状
A2第二层激活函数的 S 型输出(n_y, m)
cache包含 “Z1”、“A1”、“Z2” 和 “A2” 的字典-
def forward_propagation(X, parameters):
    
    # Retrieve each parameter from the dictionary "parameters"
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    # Implement Forward Propagation to calculate A2 (probabilities)
    Z1 = np.dot(W1,X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2,A1) + b2
    A2 = sigmoid(Z2)
    
    assert(A2.shape == (1, X.shape[1]))
    
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}
    
    return A2, cache

现在您已经计算了 A [ 2 ] A^{[2]} A[2](在 Python 变量 A2 中),它包含了每个样本的 a [ 2 ] ( i ) a^{[2](i)} a[2](i),您可以按照以下公式计算代价函数:

J = − 1 m ∑ i = 0 m ( y ( i ) log ⁡ ( a [ 2 ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ 2 ] ( i ) ) ) (14) J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \left( y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \right) \tag{14} J=m1i=0m(y(i)log(a[2](i))+(1y(i))log(1a[2](i)))(14)

2.3.2 计算损失

函数名称:compute_cost
描述

计算方程(14)中给定的交叉熵成本。

参数

参数描述形状
A2第二层激活函数的 S 型输出(1, 样本数)
Y“真实” 标签向量(1, 样本数)
parameters包含参数 W1、b1、W2 和 b2 的 Python 字典-

返回值

变量描述形状
cost根据方程(13)给定的交叉熵成本数值
def compute_cost(A2, Y, parameters):
   
    m = Y.shape[1] # number of example
    
    # Compute the cross-entropy cost
    logprobs = np.multiply(np.log(A2),Y)+np.multiply(np.log(1-A2),(1-Y))
    cost = - 1/m*np.sum(logprobs)
    
    cost = np.squeeze(cost)     # makes sure cost is the dimension we expect. 
                                # E.g., turns [[17]] into 17 
        
    cost = float(cost)         # without it, type error
    assert(isinstance(cost, float))
    
    return cost
2.3.3 反向传播

反向传播通常是深度学习中最困难(最数学化)的部分。为了帮助您,这里再次提供了关于反向传播的讲座幻灯片。由于您正在构建向量化实现,因此您将需要使用此幻灯片右侧的六个公式。

在这里插入图片描述

  • 对于第二层的 z z z 值的偏导数:
    ∂ J ∂ z 2 ( i ) = 1 m ( a [ 2 ] ( i ) − y ( i ) ) \frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)} } = \frac{1}{m} (a^{[2](i)} - y^{(i)}) z2(i)J=m1(a[2](i)y(i))

  • 对于第二层权重 W 2 W_2 W2 的偏导数:
    ∂ J ∂ W 2 = ∂ J ∂ z 2 ( i ) a [ 1 ] ( i ) T \frac{\partial \mathcal{J} }{ \partial W_2 } = \frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)} } a^{[1] (i) T} W2J=z2(i)Ja[1](i)T

  • 对于第二层偏置 b 2 b_2 b2 的偏导数:
    ∂ J ∂ b 2 = ∑ i ∂ J ∂ z 2 ( i ) \frac{\partial \mathcal{J} }{ \partial b_2 } = \sum_i{\frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)}}} b2J=iz2(i)J

  • 对于第一层的 z z z 值的偏导数:
    ∂ J ∂ z 1 ( i ) = W 2 T ∂ J ∂ z 2 ( i ) ∗ ( 1 − a [ 1 ] ( i ) 2 ) \frac{\partial \mathcal{J} }{ \partial z_{1}^{(i)} } = W_2^T \frac{\partial \mathcal{J} }{ \partial z_{2}^{(i)} } * ( 1 - a^{[1] (i) 2}) z1(i)J=W2Tz2(i)J(1a[1](i)2)

  • 对于第一层权重 W 1 W_1 W1 的偏导数:
    ∂ J ∂ W 1 = ∂ J ∂ z 1 ( i ) X T \frac{\partial \mathcal{J} }{ \partial W_1 } = \frac{\partial \mathcal{J} }{ \partial z_{1}^{(i)} } X^T W1J=z1(i)JXT

  • 对于第一层偏置 b 1 b_1 b1 的偏导数:
    ∂ J i ∂ b 1 = ∑ i ∂ J ∂ z 1 ( i ) \frac{\partial \mathcal{J} _i }{ \partial b_1 } = \sum_i{\frac{\partial \mathcal{J} }{ \partial z_{1}^{(i)}}} b1Ji=iz1(i)J

请注意,星号 ( * ) 表示元素级乘法。

在深度学习编码中常用的符号包括:

  • dW1 = ∂ J ∂ W 1 \frac{\partial \mathcal{J} }{ \partial W_1 } W1J
  • db1 = ∂ J ∂ b 1 \frac{\partial \mathcal{J} }{ \partial b_1 } b1J
  • dW2 = ∂ J ∂ W 2 \frac{\partial \mathcal{J} }{ \partial W_2 } W2J
  • db2 = ∂ J ∂ b 2 \frac{\partial \mathcal{J} }{ \partial b_2 } b2J

提示:

  • 要计算 d Z 1 dZ1 dZ1,您需要计算 g [ 1 ] ′ ( Z [ 1 ] ) g^{[1]'}(Z^{[1]}) g[1](Z[1])。由于 g [ 1 ] ( . ) g^{[1]}(.) g[1](.) 是 tanh 激活函数,如果 a = g [ 1 ] ( z ) a = g^{[1]}(z) a=g[1](z),那么 g [ 1 ] ′ ( z ) = 1 − a 2 g^{[1]'}(z) = 1-a^2 g[1](z)=1a2。因此,您可以使用 (1 - np.power(A1, 2)) 来计算 g [ 1 ] ′ ( Z [ 1 ] ) g^{[1]'}(Z^{[1]}) g[1](Z[1])

函数名称:backward_propagation

描述

根据上述说明实现反向传播。

参数

参数描述形状
parameters包含参数的 Python 字典-
cache包含 “Z1”、“A1”、“Z2” 和 “A2” 的字典-
X输入数据(2, 样本数)
Y“真实” 标签向量(1, 样本数)

返回值

变量描述形状
grads包含关于不同参数的梯度的 Python 字典-
def backward_propagation(parameters, cache, X, Y):
    
    m = X.shape[1]
    
    # First, retrieve W1 and W2 from the dictionary "parameters".
    W1 = parameters["W1"]
    W2 = parameters["W2"]
        
    # Retrieve also A1 and A2 from dictionary "cache".
    A1 = cache["A1"]
    A2 = cache["A2"]
    # Z1 = cache.get('Z1')
    
    # Backward propagation: calculate dW1, db1, dW2, db2. 
    dZ2 = A2 - Y
    dW2 = 1/m*np.dot(dZ2,A1.T)
    db2 = 1/m*np.sum(dZ2,axis=1,keepdims=True)
    dZ1 = np.dot(W2.T,dZ2) * (1-np.power(A1,2))
    dW1 = 1 / m * np.dot(dZ1,X.T) 
    db1 = 1/m*np.sum(dZ1,axis=1,keepdims=True)
    # it's not Z1, g(z1)' = (1 - A1^2)
        
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}
    
    return grads
2.3.4 更新参数

函数名称:update_parameters

描述

使用上述梯度下降更新规则更新参数。

参数

参数描述形状
parameters包含参数的 Python 字典-
grads包含梯度的 Python 字典-

返回值

变量描述形状
parameters包含更新后参数的 Python 字典-
def update_parameters(parameters, grads, learning_rate = 1.2):

    # Retrieve each parameter from the dictionary "parameters"
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    # Retrieve each gradient from the dictionary "grads"
    dW1 = grads["dW1"]
    db1 = grads["db1"]
    dW2 = grads["dW2"]
    db2 = grads["db2"]
    
    # Update rule for each parameter
    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters

2.4 集成

函数名称:nn_model

描述

构建并训练神经网络模型。

参数

参数描述形状
X数据集(2, 样本数)
Y标签(1, 样本数)
n_h隐藏层的大小-
num_iterations梯度下降迭代次数-
print_cost如果为 True,则每 1000 次迭代打印成本-

返回值

变量描述形状
parameters模型学到的参数,可以用于预测-
def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
  
    np.random.seed(3)
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]
    
    # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    # Loop (gradient descent)

    for i in range(0, num_iterations):
         
        # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
        A2,cache = forward_propagation(X, parameters)
        
        # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
        cost = compute_cost(A2, Y, parameters)
        
        # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
        grads = backward_propagation(parameters, cache, X, Y)
        
        # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
        parameters = update_parameters(parameters, grads, learning_rate = 1.2)
        
        # Print the cost every 1000 iterations
        if print_cost and i % 1000 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))
            
    return parameters
  • 10
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值