激光雷达学习

LIDAR 市场分析

1. 自动驾驶市场

1.1 全球自动驾驶市场

技术成熟度方面Waymo目前是处于领先的地位,中国的自动驾驶公司在技术和发展来看都有比较大差距,分析报告参考Waymo 案例分析

依照目前的势头和资本市场情况看,马斯特的特斯拉一马当先, 目前的市值已经超过7000亿美元,重点分析特斯拉供应链及需求量,参考文章特斯拉供应链. 特斯拉盈利方案可能是靠其软件优势建立生态系统,参考文章特斯拉软件生态

国内市场百度Apollo为第一梯队,其余的产商跟随。纤细资料参考:[中国自动驾驶十大关键公司](D:\0Solar\Lidar\Lidar 行业资料\中国自动驾驶10大关键公司! - 知乎.docx) 。百度Apollo 属于开放式平台。 目前与吉利汽车,威马汽车有深入合作。

**Auto_AI Sheet ** : 表格中收集了目前全球市场所有的整车制造商和方案以及发展历程及大致规模。

Maket Landscape

1.2 Waymo 供应链

TBD

1.3 特斯拉供应链分析

在这里插入图片描述

从特斯拉的供应链列表可以看出目前特斯拉Model Y中并没有LIDAR,联创电子是车载摄像头生产产商, 均胜电子为车载Radar 供应商。 后续L4驾驶系统应该会使用LIDAR传感器。

最新消息,Innovusion 和 均胜电子正在进行深入合作。 主要关注就是激光雷达。与 5G V2X 终端数据连接。

在这里插入图片描述
在这里插入图片描述

2. LIDAR 产商

2.1 国外重要LIDAR 产商分析。

LIDAR Velodyne Luminar Innoviz Aeva Ouster
市值/估值 41亿美金(市值)Nasdaq 107亿美金(市值)(Nasdaq) 14亿美金(估值) 21亿美金(估值) 19亿美金(估值)
核心技术 微缩小型激光雷达阵列(MLA) 光通讯激光功率放大与高灵敏度,1550纳米激光二极管 MEMS 线性激光调频芯片(FMCW) VCSEL+SPAD,全半导体真固态
技术成熟度 最高 很低 一般
产品性能 最佳 一般 一般(IBEO可以做到佳)
产品成本 最低 最高
产品信噪比 一般 最高 一般(IBEO可以做到高)
车规难易度 最易
体积 很小 很小
有效距离 最远 一般 近(IBEO可可以做得很远)
合作伙伴 现代、福特、维宁尔 丰田、沃尔沃 Mobileye 宝马、麦格纳、 安波福 奥迪、采埃孚 英伟达、赛灵思

这五大激光雷达公司,目前最高的 Luminar 市值超百亿美元,最低 Innoviz 估值也达到 14 亿美元。本田和丰田已确定在其L3级自动驾驶车型上使用激光雷达;奔驰、沃尔沃、宝马、蔚来和小鹏等厂家也准备在2021年的量产车上选用激光雷。激光雷达的真实需求即将到来。

· Velodyne: 核心技术解析:MLA

· Luminar:最高功率带来最高性能

· Innoviz:MEMS 带来最低成本

· Aeva:坚持 FMCW

· Ouster:近似于 Flash 的技术路线

2.2 国内重要LIDAR产商分析

TBD

3. LIDAR SPECs

### 使用深度学习激光雷达点云数据进行聚类 对于激光雷达点云数据的聚类,一种有效的方法是利用深度学习模型来自动提取特征并完成分类任务。这种方法不仅提高了自动化程度,还增强了处理复杂环境的能力。 #### 方法概述 通过将点云投影至二维空间或直接在三维空间中操作,可以实现高效的聚类分析。然而,当点云被简单地投影到2D平面时,可能会发生信息丢失的情况,特别是在低反射率区域可能导致目标遗漏[^3]。因此,更先进的技术倾向于保持原始3D结构来进行处理。 #### 技术细节 - **基于Bird's Eye View (BEV)** 的方法:此方法首先将点云转换为鸟瞰视角下的表示形式,接着应用卷积神经网络(CNNs)或其他机器学习算法执行聚类任务。例如,在CVC流程中的第二步创建了一个哈希表,用于记录体素内的点索引;随后,在第三步中查找邻近点,并最终形成簇群[^5]。 - **基于Voxel Grid** 的方法:另一种常见的策略是对点云实施体素化——即将连续的空间离散化为固定大小的小立方体(即体素),之后再运用CNN或者其他类型的深层架构进行训练和推理。这种方式有助于简化计算量的同时保留重要的几何特性。 - **PointNet及其变种**:这些专门设计用来处理无序集合(如点云)的数据集的网络可以直接作用于未经过任何变换的真实世界坐标系下的点位置向量。它们能够捕捉局部和全局特征,从而有效地支持下游的任务,像语义分割或是实例级的对象检测[^1]。 #### 实际案例 以自动驾驶汽车为例,为了提高安全性与可靠性,车辆配备有多个传感器,其中包括高精度LiDAR设备。通过对收集来的海量点云数据施加上述提到的技术手段之一—比如采用PointRCNN框架—可以在不依赖额外视觉输入的情况下准确定位道路上的各种障碍物以及行人等动态实体。 ```python import torch from pointnet2 import PointNet2SemSegSSG model = PointNet2SemSegSSG() input_point_cloud = ... # Load your input data here as a tensor of shape [B, N, C] output_predictions = model(input_point_cloud) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值