构建 RAG 系统的 5 个经验教训

检索增强生成 (RAG) 是 2025 年人工智能领域的热门话题之一。这些系统将相关知识检索与大型语言模型 (LLM) 相结合,通过将生成的输出基于外部知识源,而非仅仅依赖于 LLM 训练期间从文本数据中学习到的信息,从而能够对用户查询(提示)提供更准确、最新且可验证的响应。然而,构建可用于生产的 RAG 系统需要仔细考量,并面临自身的挑战。

本文列出了 AI 开发者社区在构建 RAG 系统中汲取并讨论的五个关键经验教训。

1. 信息检索质量胜过数量

早期的 RAG 实现在检索阶段主要注重数量而非质量,这意味着它们的目标是检索大量与用户查询匹配的内容。然而,实验研究表明,检索质量远比数量更重要。在大多数情况下,检索数量较少但相关性更高的文档的 RAG 系统的表现优于那些试图检索尽可能多的上下文的系统,这导致信息过剩,其中很多信息可能相关性不够。检索质量需要投入精力构建有效的文本嵌入模型和基于相关性的高级排序算法,以决定要检索的内容。使用精确度、召回率和 F1 分数等指标来评估检索性能,可以进一步帮助提高检索质量。

TL;DR → 质量重于数量:优先检索较少但高度相关的文档,以提高输出准确性。

2. 上下文窗口长度至关重要

有效管理 RAG 系统中的上下文窗口(即 LLM 在生成过程中一次可以处理的有限文本量)对于构建性能卓越的 RAG 系统至关重要。由于系统生成器端的 LLM 倾向于更关注上下文的开头和结尾部分,因此简单地串联检索到的文档可能会导致次优结果&#

### 构建 RAG (Retrieval-Augmented Generation) 系统的方法 RAG 是一种结合检索增强生成的技术,它通过从外部知识库中提取相关信息来辅助模型生成更高质量的内容。以下是关于构建 RAG 系统的关键方法和技术要点: #### 1. 数据准备与索引建立 为了实现高效的检索功能,需要先对数据集进行预处理并创建向量索引。通常会采用基于嵌入表示的方式将文档转化为稠密向量形式存储于数据库中[^1]。 ```python from sentence_transformers import SentenceTransformer import faiss # 加载预训练好的句子编码器模型 model = SentenceTransformer('all-MiniLM-L6-v2') # 假设我们有一组文本列表作为语料库 corpus_texts = ["example text", "another example"] # 将每条记录转换成对应的embedding vector embeddings = model.encode(corpus_texts) # 使用FAISS库构建索引结构以便快速查找相似项 index = faiss.IndexFlatL2(embeddings.shape[1]) index.add(np.array(embeddings)) ``` #### 2. 查询理解模块设计 此部分负责接收用户的输入请求,并将其解析为适合后续操作的形式。这一步骤可能涉及自然语言处理技术如分词、去停用词等预处理手段以及利用BERT之类的深度学习框架获取查询短语的低维特征表达[^2]。 #### 3. 检索机制的选择与优化 在实际应用过程中可以选择不同的算法完成最近邻搜索任务,比如局部敏感哈希(LSH),近似最邻近搜索(ANN)或者精确匹配等等。这些策略各有优劣需根据具体场景权衡取舍[^3]。 #### 4. 文本生成组件搭建 最后一步就是引入强大的序列到序列(Seq2Seq)架构来进行最终的回答创作工作。可以考虑微调现有的大型语言模型(LLMs),让它们学会如何依据前面找到的相关片段合成连贯且贴切的答案[^4]。 ```python from transformers import pipeline, AutoTokenizer, TFAutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("t5-base") model = TFAutoModelForSeq2SeqLM.from_pretrained("t5-base") generator = pipeline('text-generation', model=model, tokenizer=tokenizer) result = generator("translate English to French: Hello world!", max_length=50)[0]['generated_text'] print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值