基于MuJoCo物理引擎的机器人学习仿真框架robosuite

Robosuite 基于 MuJoCo 物理引擎,能支持多种机器人模型,提供丰富多样的任务场景,像基础的抓取、推物,精细的开门、拧瓶盖等操作。它可灵活配置多种传感器,提供本体、视觉、力 / 触觉等感知数据。因其对强化学习友好,能与主流 RL 框架兼容,方便开发和测试机器人操作的强化学习算法,还可用于机器人路径规划、视觉伺服等算法的验证,也适用于人机协作研究。

pip install robosuite
import robosuite as suite
from robosuite.wrappers import GymWrapper

# 创建仿真环境(Panda机械臂抓取任务)
env = suite.make(
    env_name="PickAndPlace",
    robots="Panda",
    has_renderer=True,  # 启用渲染
    has_offscreen_renderer=False,  # 关闭离线渲染(用于非GUI场景)
    use_camera_obs=True,  # 使用视觉观测
    reward_shaping=True  # 启用奖励塑形
)

# 转换为Gym风格环境(便于RL算法接入)
env = GymWrapper(env)

# 初始化环境
obs = env.reset()
for _ in range(1000):
    action = env.action_space.sample()  # 随机动作(实际应用中替换为算法输出)
    obs, reward, done, info = env.step(action)
    if done:
        obs = env.reset()
env.close()

robosuite | robosuite: A Modular Simulation Framework and Benchmark for Robot Learningrobosuite: A Modular Simulation Framework and Benchmark for Robot Learninghttps://robosuite.ai/

https://zhuanlan.zhihu.com/p/6621264369https://zhuanlan.zhihu.com/p/6621264369

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值