Robosuite 基于 MuJoCo 物理引擎,能支持多种机器人模型,提供丰富多样的任务场景,像基础的抓取、推物,精细的开门、拧瓶盖等操作。它可灵活配置多种传感器,提供本体、视觉、力 / 触觉等感知数据。因其对强化学习友好,能与主流 RL 框架兼容,方便开发和测试机器人操作的强化学习算法,还可用于机器人路径规划、视觉伺服等算法的验证,也适用于人机协作研究。
pip install robosuite
import robosuite as suite
from robosuite.wrappers import GymWrapper
# 创建仿真环境(Panda机械臂抓取任务)
env = suite.make(
env_name="PickAndPlace",
robots="Panda",
has_renderer=True, # 启用渲染
has_offscreen_renderer=False, # 关闭离线渲染(用于非GUI场景)
use_camera_obs=True, # 使用视觉观测
reward_shaping=True # 启用奖励塑形
)
# 转换为Gym风格环境(便于RL算法接入)
env = GymWrapper(env)
# 初始化环境
obs = env.reset()
for _ in range(1000):
action = env.action_space.sample() # 随机动作(实际应用中替换为算法输出)
obs, reward, done, info = env.step(action)
if done:
obs = env.reset()
env.close()
https://zhuanlan.zhihu.com/p/6621264369https://zhuanlan.zhihu.com/p/6621264369