
控制理论
文章平均质量分 84
FL17171314
Robotics;Human-Robot Collaboration;Physical Human-Robot Interaction Control;Theory and Applications;Optimal control;Force control;Haptics
展开
-
触觉设备,临场感,预测控制,DOB
在上一篇的文章中我们介绍了扰动观测器在频域下的基本原理,考虑在实际应用中,采用的是数字化控制,因此,在时域下进行扰动观测器具有重要的意义。对于一个单输入单输出的系统,在考虑外部扰动的情况下,系统的频域表达如下: 式中,U(s)表示控制的输入,Y(s)表示控制的输出,D(s)表示系统的扰动,表示的是系统的模型。扰动观测器的基本框架如下图所示,图中表示的是系统模型的有名值,Q(s)表示的是扰动观测器的滤波器。,是一类特殊的控制。过程的当前状态作为最优控制问题的初始状态,解得的最优控制序列只实施第一个控制作用。原创 2022-11-10 10:04:35 · 878 阅读 · 0 评论 -
Differential games:pursue,formation control problem
微分对策理论是在考虑一定的环境下参与对抗或者竞争活动的对手之间关系问题时,通过借助数学上的微分方程或方程组等工具以数据化的方式描述整个关系问题的现象和内在规律的一种以时间为主轴的动态对策。对解微分对策问题进行求解就是对一个复杂的最优化的控制理论问题的求解在博弈问题中,每一个博弈个体都有一个代价函数,这个代价函数不但和自己的行为决策有关,还和其他所有的博弈个体的行为决策有关。每个博弈个体通过改变自己的决策来最小化自己的代价函数,博弈个体在最小化自己代价函数。原创 2022-10-29 11:44:49 · 1050 阅读 · 0 评论 -
使用 MATLAB 引擎在生成的代码中执行函数调用
在 MATLAB® 代码中处理对函数foo的调用时,代码生成器会找到foo的定义并为其函数体生成代码。在某些情况下,您可能希望绕过代码生成,而是使用 MATLAB 引擎来执行调用。使用声明对foo的调用不生成代码,而是使用 MATLAB 引擎执行。在此上下文中,foo称为外部函数。在执行期间,仅当 MATLAB 引擎可用时,此功能才可用。这种情况的示例包括 MEX 函数的执行、Simulink® 仿真或代码生成时的函数调用(也称为编译时)。如果为调用foo并包含。原创 2022-09-27 16:39:53 · 613 阅读 · 0 评论 -
卡尔曼滤波(Kalman Filter)设计与应用
案例1: 称金子重量现在我们已经有足够的基础看第一个简单的例子。在这个例子中,我们将估计静态系统的状态。静态系统是一个在合理时间内不会改变其状态的系统。例如,静态系统可以是一个塔,状态是它的高度。,再产生对未知变数的估计,因此会比只以单一测量量为基础的估计方式要准。图解卡尔曼滤波器,无需深厚的数学知识也易懂(第三部分:α−β−γ滤波器) - 知乎。模块在给定过程和测量噪声协方差数据的情况下估计状态空间对象模型的状态。卡尔曼滤波会根据各测量量在不同时间下的值,考虑各时间下的。原创 2022-09-23 21:33:37 · 938 阅读 · 0 评论 -
Matlab迭代算法实现
【代码】Matlab迭代算法实现。原创 2022-09-21 16:55:19 · 6519 阅读 · 0 评论 -
Riccati 方程求解及MATLAB function遇到的代码生成问题
黎卡提(Riccati)方程一般没有初等解法,但是很多实际问题与理论问题又迫切需要求得这个方程的解,这也使得这一方程成为世界著名难题。黎卡提方程自从十七世纪黎卡提提出以来,历经三百多年一直未有一般解法,虽然有众多特例解法,但是都未能从根本上解决这个方程。代数黎卡提方程通常会在求解最优控制时有所应用,比如LQR控制。其中P是未知量,A、B、Q、R为已知量。离散代数黎卡提方程可以迭代求解。原创 2022-09-20 16:08:08 · 1794 阅读 · 0 评论 -
模型预测控制(Model predictive control,MPC)
然而,由于 MPC 不对线性度做任何假设,它可以处理硬约束以及非线性系统从其线性化操作点的迁移,这两者都是 LQR 的主要缺点。模型预测控制器通常着眼于固定长度、通常逐渐加权的误差函数集,而线性二次调节器则着眼于所有线性系统输入并提供传递函数,该传递函数将减少整个频谱的总误差,权衡状态误差针对输入频率。MPC 可以在这些固定点之间绘制一条路径,但不能保证解决方案的收敛性,特别是如果考虑到问题空间的凸性和复杂性已被忽略。模型预测控制和线性二次调节器都是最优控制的表达,具有不同的设置优化成本的方案。原创 2022-09-17 11:42:22 · 2690 阅读 · 0 评论 -
LQR与LQG问题
根据分离原理,在一些范围较宽可能是非线性的控制器中,LQG控制器仍然是最佳的。成本函数一般会定义为主要量测量(例如飞行高度或是制程温度)和理想值的偏差的和。(也称为极点安置)的作法,此作法对控制器参数和控制器性能之间的关系比较明确。LQG控制器本身是一个类似其受控系统的动态系统,两者有相同的维度。,只要其系统动态是线性的,其最佳控制仍可以分离为最佳状态估测器(不再是卡尔曼滤波器)及LQR控制器。控制机器(例如飞机)的控制器,或是控制制程(例如化学反应)的控制器,可以进行。,让这些不希望出现的偏差降到最小。原创 2022-09-15 19:37:51 · 5415 阅读 · 0 评论 -
机器人自适应控制
例如,当飞机飞行时,由于燃料消耗,它的质量会慢慢减小;需要一种能够适应这种不断变化的条件的控制法则。鲁棒控制保证如果变化在给定的范围内,则控制律不需要改变,而自适应控制则关注控制律本身的改变。是控制器使用的控制方法,它必须适应具有可变参数或最初不确定的受控系统。,因为它不需要关于这些不确定或时变参数的边界。原创 2022-09-11 17:04:24 · 1033 阅读 · 0 评论 -
机器人控制——PID参数整定
3)若单独的比例环节不能满足设计要求,则此时加入积分环节,调整好的比例系数缩小为原来的0.8,然后调节积分时间参数,使得系统能保持较小的稳态误差和较小的振荡时间,此时可以同时调整比例系数和积分时间常数,知道得到较为满意的结果;PID控制器(ProportionIntegrationDifferentiation),俗称比例-积分-微分控制器,分别由比例单元(P)…(4)如若还不是特别满意,可以增加微分环节,从小到大逐渐增加微分时间常数,同时相应的更改比例系数和积分时间,试凑出合适参数。...原创 2022-07-20 11:56:34 · 1422 阅读 · 0 评论 -
MATLAB Simulink 离散PID模块应用
此模块实现连续和离散时间PID控制算法,并包括高级功能,如抗饱和、外部重置和信号跟踪。您可以使用'调节...'按钮自动调节PID增益(需要SimulinkControlDesign)。DiscretePIDController模块实现一个PID控制器(PID、PI、PD、仅P或仅I)。该模块与时域参数设置为离散时间的PIDController模块相同。离散时间或连续时间PID控制器-Simulink-MathWorks中国。......原创 2022-07-20 11:41:42 · 7873 阅读 · 3 评论 -
机器人PID控制
比例-积分-微分控制器(PID 控制器或三项控制器)是一种采用反馈的控制回路机制,广泛用于工业控制系统和需要连续调制控制的各种其他应用。PID 控制器连续计算误差值 {\displaystyle e(t)}作为所需设定点(SP) 和测量过程变量(PV) 之间的差异,并根据比例、积分和微分项(分别表示为P、I和D)应用校正,因此得名。实际上,PID 会自动对控制功能进行准确且响应迅速的校正。一个日常的例子是汽车的巡航控制,如果施加恒定的发动机功率,上坡会降低速度。控制器的 PID 算法通过以受控方式增加发动机原创 2022-06-18 16:06:41 · 5683 阅读 · 0 评论 -
线性与非线性控制
控制理论领域可以分为两个分支:对于 MIMO 系统,可以使用开环系统的状态空间表示并计算在所需位置分配极点的反馈矩阵,以数学方式执行极点放置。在复杂的系统中,这可能需要计算机辅助计算能力,并且不能始终确保稳健性。此外,通常不会测量所有系统状态,因此必须在极点布置设计中包括并纳入观察者。机器人和航空航天工业等行业的过程通常具有很强的非线性动力学。在控制理论中,有时可以对此类系统进行线性化并应用线性技术,但在许多情况下,可能有必要从头开始设计允许控制非线性系统的理论。这些,例如反馈线性化、反推、滑模控制、轨迹线原创 2022-06-14 16:33:49 · 5520 阅读 · 0 评论