旋转与复数

一.2D旋转

当在2D平面旋转一个向量时,旋转矩阵为 [ c o s θ − s i n θ s i n θ c o s θ ] \begin{bmatrix} cos \theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix} [cosθsinθsinθcosθ], 在上图中可以看到向量 a → = ( x , y ) \overrightarrow{a} = (x,y) a =(x,y) ,将其逆时针旋转 θ \theta θ角度后得到 b → = ( x ′ , y ′ ) \overrightarrow{b} = ({x^{\prime},y^{\prime}}) b =(x,y)。假设向量的长度为 r r r,则:
a → = ( x , y ) = ( r   c o s α , r   s i n α ) b → = ( x ′ , y ′ ) = ( r   c o s ( θ + α ) , r   s i n ( θ + α ) ) \overrightarrow{a} = (x,y) = (r \space cos\alpha, r \space sin\alpha)\\ \overrightarrow{b} =({x^{\prime},y^{\prime}}) = (r \space cos(\theta+\alpha), r \space sin(\theta+\alpha)) a =(x,y)=r cosα,r sinαb =(x,y)=r cos(θ+α),r sin(θ+α)
可以轻易求得:
x ′ = x   c o s θ − y   s i n θ y ′ = x   s i n θ + y   c o s θ x^{\prime} = x \space cos\theta - y \space sin\theta \\ y^{\prime} = x\space sin\theta + y \space cos\theta x=x cosθy sinθy=x sinθ+y cosθ
写成矩阵乘法的形式:
[ x ′ y ′ ] = [ c o s θ − s i n θ s i n θ c o s θ ] [ x y ] \begin{bmatrix} x^{\prime} \\ y^{\prime} \end{bmatrix} = \begin{bmatrix} cos \theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} [xy]=[cosθsinθsinθcosθ][xy]显而易见,中间的矩阵就是旋转矩阵

旋转与复数

在这里插入图片描述

复数与旋转有着紧密的联系,如图,在横轴为实部,纵轴为虚部的复平面上,有四个模长相等的虚数 z 1 , z 2 , z 3 , z 4 z_1,z_2,z_3,z_4 z1,z2,z3,z4。我们可以发现,当一个虚数逆时针 9 0 ∘ 90^{\circ} 90时,就相当于乘上虚数 i i i z 1 ∗ i = ( 1 + i ) ∗ i = − 1 + i = z 2 z_1 * i = (1+i) *i =-1+i = z_2 z1i=(1+i)i=1+i=z2,图中又显示 z 1 z_1 z1逆时针旋转 9 0 ∘ 90^{\circ} 90就是 z 2 z_2 z2;同理可以算得 z 2 , z 3 , z 4 z_2,z_3,z_4 z2,z3,z4的旋转。

这个时候我们应该思考,如果旋转 9 0 ∘ 90^{\circ} 90相当于乘以虚数 i i i,那么其他角度呢?我们先引入复平面的极坐标系,
复平面直角坐标系与极坐标
在极坐标下,我们可以使用长度 r r r和角度 θ \theta θ来表示一个复数,所以我们有:
z = a + b i = r c o s θ + i   r s i n θ = r ( c o s θ + i s i n θ ) = r e i θ    \begin{equation*} \begin{aligned} z &= a +bi \\ &= rcos\theta + i\space r sin\theta \\ &= r(cos\theta + i sin\theta) \\ & = re^{_i\theta} \space \space \end{aligned} \end{equation*} z=a+bi=rcosθ+i rsinθ=r(cosθ+isinθ)=reiθ  
最后一步用欧拉公式,它的证明可以通过泰勒展开来证:
首先,在 x = 0 x = 0 x=0处, e x   = ∑ n = 0 ∞ 1 n ! x n = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + ⋯   s i n x = ∑ k = 0 ∞ ( − 1 ) k ( 2 k + 1 ) ! x 2 k + 1 = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯   c o s x = ∑ k = 0 ∞ ( − 1 ) k ( 2 k ) ! x 2 k = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ e^{x}\space= \sum_{n=0}^{\infty} \frac{1}{n!}x^n =1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots +\frac{x^n}{n!} + \cdots \\~\\ sinx = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!}x^{2k+1} =x - \frac{x^3}{3!} + \frac{x^5}{5!} -\frac{x^7}{7!}+\cdots \\~\\ cosx = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!}x^{2k} =1 - \frac{x^2}{2!} + \frac{x^4}{4!} -\frac{x^6}{6!}+\cdots ex =n=0n!1xn=1+x+2!x2+3!x3++n!xn+ sinx=k=0(2k+1)!(1)kx2k+1=x3!x3+5!x57!x7+ cosx=k=0(2k)!(1)kx2k=12!x2+4!x46!x6+
我们将 x = i θ x={i\theta} x=iθ带入 e x e^{x} ex,可以得到:
e i θ = ∑ n = 0 ∞ 1 n ! ( i θ ) n = 1 + i θ + ( i θ ) 2 2 ! + ( i θ ) 3 3 ! + ⋯ + ( i θ ) n n ! + ⋯   = 1 + i θ − ( θ ) 2 2 ! + i ( θ ) 3 3 ! − ( θ ) 4 4 ! + i ( θ ) 5 5 ! − ( θ ) 6 6 ! + ⋯   = ( 1 − θ 2 2 ! + θ 4 4 ! − θ 6 6 ! + ⋯   ) + i ( θ − θ 3 3 ! + θ 5 5 ! − θ 7 7 ! + ⋯   )   = c o s θ + i s i n θ \begin{equation*} \begin{aligned} e^{i\theta} &= \sum_{n=0}^{\infty} \frac{1}{n!}({i\theta})^n =1+{i\theta}+\frac{({i\theta})^2}{2!}+\frac{({i\theta})^3}{3!}+\cdots +\frac{({i\theta})^n}{n!} + \cdots\\~\\ &=1+{i\theta}-\frac{({\theta})^2}{2!}+i\frac{({\theta})^3}{3!}- \frac{({\theta})^4}{4!} + i\frac{({\theta})^5}{5!}- \frac{({\theta})^6}{6!}+\cdots\\~\\ &= (1 - \frac{{\theta}^2}{2!} + \frac{{\theta}^4}{4!} -\frac{{\theta}^6}{6!}+\cdots) + i ({\theta} - \frac{{\theta}^3}{3!} + \frac{{\theta}^5}{5!} -\frac{{\theta}^7}{7!}+\cdots) \\~\\ &=cos{\theta} + i sin{\theta} \end{aligned} \end{equation*} eiθ   =n=0n!1(iθ)n=1+iθ+2!(iθ)2+3!(iθ)3++n!(iθ)n+=1+iθ2!(θ)2+i3!(θ)34!(θ)4+i5!(θ)56!(θ)6+=(12!θ2+4!θ46!θ6+)+i(θ3!θ3+5!θ57!θ7+)=cosθ+isinθ
证毕。

当利用指数形式的复数表示做乘法运算的时候,我们可以轻易得到:
z 1 = r 1 e i θ 1 ,   z 2 = r 2 e i θ 2   z 1 z 2 = ( r 1 r 2 ) e i ( θ 1 + θ 2 ) z_{1} = r_1 e^{i\theta_{1}}, \space z_{2} = r_2 e^{i\theta_{2}} \\ ~\\ z_1 z_2 = (r_1r_2)e^{i(\theta_{1} + \theta_{2})} z1=r1eiθ1, z2=r2eiθ2 z1z2=(r1r2)ei(θ1+θ2)
这说明当我们将两个复数相乘得到的新复数的模长为两个复数模长的乘积,而角度为两复数角度之和。我们可以以此推断当乘以一个复数时,会做缩放和旋转操作。而当模长为1时比如 z = e i θ z = e^{i\theta} z=eiθ,就仅仅相当于做逆时针旋转 θ \theta θ角度。

由此我们可以发现复数和旋转的紧密联系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值