复数与旋转

本文探讨了复数的性质,指出复数相乘等效于矩阵变换,进而展示了复数如何与2D平面上的旋转相关联。通过矩阵变换,将复数与旋转角度联系起来,揭示了复数乘法导致的旋转和放大的原理,并引入欧拉公式以更直观地表示复数和旋转角度的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近看到复数的一些有趣性质,记录在此。
从定义开始,复数由实部和虚部构成:
z = a + b i , i 2 = − 1 z = a + bi,i^2 = -1 z=a+bii2=1
有时方便起见,亦表示位向量形式 ( a , b ) (a,b) (a,b).
对于两个复数 z 1 = ( a , b ) , z 2 = ( c , d ) z_1 = (a,b),z_2 = (c,d) z1=(a,b),z2=(c,d)相乘,
z 1 z 2 = ( a + b i ) ( c + d i ) = a c − b d + a d i + b d i = [ a − b b a ] ( c d ) z_1 z_2 = (a + bi)(c+di) \\ =ac -bd +adi+bdi\\ =\begin{matrix}\left[ \begin{array}{ccc} a &-b \\ b&a \\ \end{array} \right]\left( \begin{array}{ccc} c\\ d \end{array} \right) \end{matrix} z1z2=(a+bi)(c+di)=acbd+adi+bdi=

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值