2维旋转--复数

复数

z = a + b i z=a+bi z=a+bi
其中, i 2 = − 1 i^2=-1 i2=1 a a a称为实部, b b b称为虚部。我们可以用一个向量表示一个复数:
z = [ a b ] . \left.z=\left[\begin{array}{c}a\\b\end{array}\right.\right]. z=[ab].
也可以用矩阵来表示:
z = [ a − b b a ] \left.z=\left[\begin{array}{cc}a&-b\\b&a\end{array}\right.\right] z=[abba]

在复平面上的一个点如下:

在这里插入图片描述

复数乘法

因为复数加法比较简单,就不介绍了。
若有两个复数 z 1 = a + b i , z 2 = c + d i z_1=a+bi,z_2=c+di z1=a+bi,z2=c+di,其乘积为:
z 1 z 2 = ( a + b i ) ( c + d i ) = a c + a d i + b c i + b d i 2 = a c − b d + a d i + b c i = a c − b d + ( a c + a d ) i = [ a − b b a ] [ c d ] \begin{aligned} z_{1}z_{2}& =(a+bi)(c+di) \\ &=ac+adi+bci+bdi^{2} \\ &=ac-bd+adi+bci \\ &=ac-bd+(ac+ad)i \\ &=\left.\left[\begin{array}{cc}a&-b\\b&a\end{array}\right.\right]\left[\begin{array}{c}\color{red}{c}\\\color{red}{d}\end{array}\right] \end{aligned} z1z2=(a+bi)(c+di)=ac+adi+bci+bdi2=acbd+adi+bci=acbd+(ac+ad)i=[abba][cd]

右侧的 [ c d ] \left.\left[\begin{array}{c}c\\d\end{array}\right.\right] [cd]是用向量的形式来表示的 z 2 z_2 z2,左侧的 [ a − b b a ] \left.\left[\begin{array}{cc}a&-b\\b&a\end{array}\right.\right] [abba] z 1 z_1 z1的矩阵形式。

复数的相乘也可以表示为矩阵的相乘,
z 1 z 2 = [ a − b b a ] [ c − d d c ] = [ a c − b d − ( b c + a d ) b c + a d a c − b d ] . \begin{aligned} z_{1}z_{2}& \left.=\left[\begin{array}{cc}a&-b\\b&a\end{array}\right.\right]\left[\begin{array}{cc}c&-d\\d&c\end{array}\right] \\ &\left.=\left[\begin{array}{cc}ac-bd&-(bc+ad)\\bc+ad&ac-bd\end{array}\right.\right]. \end{aligned} z1z2=[abba][cddc]=[acbdbc+ad(bc+ad)acbd].
(复数的相乘是符合交换律的)

特殊复数的矩阵形式

1 = [ 1 0 0 1 ] = I \left.1=\left[\begin{array}{cc}1&0\\0&1\end{array}\right.\right]=I 1=[1001]=I
i = [ 0 − 1 1 0 ] \left.i=\left[\begin{array}{cc}0&-1\\1&0\end{array}\right.\right] i=[0110]

当我们对虚数进行平方时,
i 2 = i ⋅ i = [ 0 − 1 1 0 ] [ 0 − 1 1 0 ] = [ − 1 0 0 − 1 ] = − I = − 1. \left.i^2=i\cdot i=\left[\begin{array}{cc}0&-1\\1&0\end{array}\right.\right]\left[\begin{array}{cc}0&-1\\1&0\end{array}\right]=\left[\begin{array}{cc}-1&0\\0&-1\end{array}\right]=-I=-1. i2=ii=[0110][0110]=[1001]=I=1.

复数的模长与共轭

模长:
∥ z ∥ = a 2 + b 2 . \|z\|=\sqrt{a^2+b^2}. z=a2+b2 .

共轭:若 z = a + b i z=a+bi z=a+bi,则其共轭为
z ‾ = a − b i . \overline{z}=a-bi. z=abi.

其中,计算 z z ‾ z\overline{z} zz,
z z ‾ = ( a + b i ) ( a − b i ) = a 2 − a b i + a b i + b 2 = a 2 + b 2 = ∥ z ∥ 2 . \begin{aligned} z\overline{z}& =(a+bi)(a-bi) \\ &=a^{2}-abi+abi+b^{2} \\ &=a^{2}+b^{2}=\|z\|^{2}. \end{aligned} zz=(a+bi)(abi)=a2abi+abi+b2=a2+b2=z2.

所以复数的模长又可以通过乘积的方式进行计算,
∥ z ∥ = z z ‾ . \|z\|=\sqrt{z\overline{z}}. z=zz .

复数相乘与2D旋转

与复数相乘代表着 [ a − b b a ] \left.\left[\begin{array}{cc}a&-b\\b&a\end{array}\right.\right] [abba]矩阵所作出的变换

对这个矩阵进行一些变形,
[ a − b b a ] = a 2 + b 2 [ a a 2 + b 2 − b a 2 + b 2 b a 2 + b 2 a a 2 + b 2 ] . \left.\left[\begin{array}{cc}a&-b\\b&a\end{array}\right.\right]=\sqrt{a^2+b^2}\left[\begin{array}{cc}\frac{a}{\sqrt{a^2+b^2}}&\frac{-b}{\sqrt{a^2+b^2}}\\\frac{b}{\sqrt{a^2+b^2}}&\frac{a}{\sqrt{a^2+b^2}}\end{array}\right]. [abba]=a2+b2 [a2+b2 aa2+b2 ba2+b2 ba2+b2 a].

在这里插入图片描述
可以看到, ∥ z ∥ \|z\| z是复数 z z z与坐标轴所形成的三角形的斜边长,通过三角函数可以得到,
a a 2 + b 2 = cos ⁡ ( θ ) , b a 2 + b 2 = sin ⁡ ( θ ) \frac{a}{\sqrt{a^{2}+b^{2}}}=\cos(\theta) ,\frac{b}{\sqrt{a^{2}+b^{2}}}=\sin(\theta) a2+b2 a=cos(θ),a2+b2 b=sin(θ)
代入到上述矩阵中,可得到:
[ a − b b a ] = a 2 + b 2 [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] = ∥ z ∥ [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] = ∥ z ∥ ⋅ I [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] = [ ∥ z ∥ 0 0 ∥ z ∥ ] [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] . \begin{aligned} \left.\left[\begin{array}{cc}a&-b\\b&a\end{array}\right.\right]& \left.=\sqrt{a^{2}+b^{2}}\left[\begin{array}{cc}{\cos(\theta)}&{-\sin(\theta)}\\{\sin(\theta)}&{\cos(\theta)}\end{array}\right.\right] \\ &\left.=\|z\|\left[\begin{array}{cc}\cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{array}\right.\right] \\ &\left.=\|z\|\cdot I\left[\begin{array}{cc}\cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{array}\right.\right] \\ &\left.=\left[\begin{array}{cc}\|z\|&0\\0&\|z\|\end{array}\right.\right]\left[\begin{array}{cc}\cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{array}\right]. \end{aligned} [abba]=a2+b2 [cos(θ)sin(θ)sin(θ)cos(θ)]=z[cos(θ)sin(θ)sin(θ)cos(θ)]=zI[cos(θ)sin(θ)sin(θ)cos(θ)]=[z00z][cos(θ)sin(θ)sin(θ)cos(θ)].

[ ∥ z ∥ 0 0 ∥ z ∥ ] \left.\left[\begin{array}{cc}\|z\|&0\\0&\|z\|\end{array}\right.\right] [z00z]是缩放矩阵,而 [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] \left.\left[\begin{array}{cc}\cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{array}\right.\right] [cos(θ)sin(θ)sin(θ)cos(θ)]是2D的旋转矩阵(旋转矩阵

接下来,我们对 [ 1 0 ] \left.\left[\begin{array}{c}1\\0\end{array}\right.\right] [10] [ 0 1 ] \left.\left[\begin{array}{c}0\\1\end{array}\right.\right] [01]进行变换。
[ 1 0 ] \left.\left[\begin{array}{c}1\\0\end{array}\right.\right] [10]
[ a − b b a ] [ 1 0 ] = [ ∥ z ∥ 0 0 ∥ z ∥ ] [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] [ 1 0 ] = [ ∥ z ∥ 0 0 ∥ z ∥ ] [ cos ⁡ ( θ ) sin ⁡ ( θ ) ] . \begin{gathered} \left.\left[\begin{array}{cc}a&-b\\b&a\end{array}\right.\right]\left[\begin{array}{c}1\\0\end{array}\right] \left.=\left[\begin{array}{cc}\|z\|&0\\0&\|z\|\end{array}\right.\right]\left[\begin{array}{cc}\cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{array}\right]\left[\begin{array}{c}1\\0\end{array}\right] \\ \left.=\left[\begin{array}{cc}\|z\|&0\\0&\|z\|\end{array}\right.\right]\left[\begin{array}{c}\cos(\theta)\\\sin(\theta)\end{array}\right]. \end{gathered} [abba][10]=[z00z][cos(θ)sin(θ)sin(θ)cos(θ)][10]=[z00z][cos(θ)sin(θ)].
第一步将 [ 1 0 ] \left.\left[\begin{array}{c}1\\0\end{array}\right.\right] [10]变换到了 [ cos ⁡ ( θ ) sin ⁡ ( θ ) ] \left.\left[\begin{array}{c}\cos(\theta)\\\sin(\theta)\end{array}\right.\right] [cos(θ)sin(θ)]的位置,也就是逆时针旋转了 θ \theta θ度;第二部将其进行缩放 ∥ z ∥ \|z\| z倍;

[ 0 1 ] \left.\left[\begin{array}{c}0\\1\end{array}\right.\right] [01]同理:
[ a − b b a ] [ 0 1 ] = [ ∥ z ∥ 0 0 ∥ z ∥ ] [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] [ 0 1 ] = [ ∥ z ∥ 0 0 ∥ z ∥ ] [ − sin ⁡ ( θ ) cos ⁡ ( θ ) ] . \begin{gathered} \left.\left[\begin{array}{cc}a&-b\\b&a\end{array}\right.\right]\left[\begin{array}{c}0\\1\end{array}\right] \left.=\left[\begin{array}{cc}\|z\|&0\\0&\|z\|\end{array}\right.\right]\left[\begin{array}{cc}\cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{array}\right]\left[\begin{array}{c}0\\1\end{array}\right] \\ \left.=\left[\begin{array}{cc}\|z\|&0\\0&\|z\|\end{array}\right.\right]\left[\begin{matrix}-\sin(\theta)\\\cos(\theta)\end{matrix}\right]. \end{gathered} [abba][01]=[z00z][cos(θ)sin(θ)sin(θ)cos(θ)][01]=[z00z][sin(θ)cos(θ)].
在这里插入图片描述
所以,复数的相乘其实是旋转与缩放的复合操作;一个复数 z = a + b i z=a+bi z=a+bi,那么 z z z与任意一个复数 c c c相乘都会将 c c c逆时针旋转 θ = atan2 ⁡ ( b , a ) \theta=\operatorname{atan2}(b,a) θ=atan2(b,a)度,并将其缩放 ∥ z ∥ = a 2 + b 2 \|z\|=\sqrt{a^{2}+b^{2}} z=a2+b2
∥ z ∥ = 1 \|z\|=1 z=1,即 a 2 + b 2 = 1 a^2+b^2=1 a2+b2=1,则复数可以用一个单位向量来表示,则其表示的几何意义就只剩下旋转,
z = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] \left.z=\left[\begin{array}{cc}\cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{array}\right.\right] z=[cos(θ)sin(θ)sin(θ)cos(θ)]

将其写成复数的形式, cos ⁡ ( θ ) + i sin ⁡ ( θ ) . \cos(\theta)+i\sin(\theta). cos(θ)+isin(θ).
可以得到2D的旋转公式:
v ′ = z v = ( cos ⁡ ( θ ) + i sin ⁡ ( θ ) ) v \begin{aligned}v'&=zv\\\\&=(\cos(\theta)+i\sin(\theta))v\end{aligned} v=zv=(cos(θ)+isin(θ))v
其中, v = [ x y ] \left.\mathbf{v}=\left[\begin{array}{c}{x}\\{y}\\\end{array}\right.\right] v=[xy]看作是一个复数 v = x + y i v=x+yi v=x+yi z = cos ⁡ ( θ ) + i sin ⁡ ( θ ) z=\cos(\theta)+i\sin(\theta) z=cos(θ)+isin(θ)

复数的极坐标型

根据欧拉公式:
cos ⁡ ( θ ) + i sin ⁡ ( θ ) = e i θ . \cos(\theta)+i\sin(\theta)=e^{i\theta}. cos(θ)+isin(θ)=eiθ.
根据这个公式,可以将复数 z z z表示为,
z = ∥ z ∥ [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] = ∥ z ∥ ( cos ⁡ ( θ ) + i sin ⁡ ( θ ) ) = ∥ z ∥ e i θ . \begin{aligned} z& = \left.\|z\|\left[\begin{matrix}\cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{matrix}\right.\right] \\ &=\|z\|(\cos(\theta)+i\sin(\theta)) \\ &=\|z\|e^{i\theta}. \end{aligned} z=z[cos(θ)sin(θ)sin(θ)cos(θ)]=z(cos(θ)+isin(θ))=zeiθ.
定义 r = ∥ z ∥ r=\|z\| r=z,得到复数的极坐标形式:
z = r e i e z=re^{ie} z=reie

一个向量 v = [ x y ] \left.\mathbf{v}=\left[\begin{array}{c}{x}\\{y}\end{array}\right.\right] v=[xy]进行旋转以及缩放,,得到:
v ′ = r e i θ v . v'=re^{i\theta}v. v=reiθv.

旋转的复合

对一个向量进行两种旋转: z 1 = cos ⁡ ( θ ) + i sin ⁡ ( θ ) z_{1}=\cos(\theta)+i\sin(\theta) z1=cos(θ)+isin(θ) z 2 = cos ⁡ ( ϕ ) + i sin ⁡ ( ϕ ) z_{2}=\cos(\phi)+i\sin(\phi) z2=cos(ϕ)+isin(ϕ),得到:
v ′ ′ = ( z 2 z 1 ) v = z net v z net = z 2 z 1 . \begin{aligned}v''&=(z_2z_1)v=z_\text{net}v\end{aligned}\\z_\text{net}=z_2z_1. v′′=(z2z1)v=znetvznet=z2z1.

通过一系列计算简化,得到:
z n e t = ( cos ⁡ ( θ ) + i sin ⁡ ( θ ) ) ( cos ⁡ ( ϕ ) + i sin ⁡ ( ϕ ) ) = cos ⁡ ( θ + ϕ ) + i sin ⁡ ( θ + ϕ ) . \begin{aligned} z_{\mathrm{net}}& =(\cos(\theta)+i\sin(\theta))(\cos(\phi)+i\sin(\phi)) \\ &=\cos(\theta+\phi)+i\sin(\theta+\phi). \end{aligned} znet=(cos(θ)+isin(θ))(cos(ϕ)+isin(ϕ))=cos(θ+ϕ)+isin(θ+ϕ).

参考文章

  • 17
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值